A complex way to compute fMRI activation

被引:80
作者
Rowe, DB
Logan, BR
机构
[1] Med Coll Wisconsin, Dept Biophys, Milwaukee, WI 53226 USA
[2] Med Coll Wisconsin, Div Biostat, Milwaukee, WI 53226 USA
关键词
functional magnetic resonance imaging; magnetic field inhomogeneities; voxel time courses;
D O I
10.1016/j.neuroimage.2004.06.042
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In functional magnetic resonance imaging, voxel time courses after Fourier or non-Fourier "image reconstruction" are complex valued as a result of phase imperfections due to magnetic field inhomogeneities. Nearly all fMRI studies derive functional "activation" based on magnitude voxel time courses [Bandettini, P., Jesmanowiez, A., Wong, E., Hyde, J.S., 1993. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 30 (2): 161-173 and Cox, R.W., Jesmanowicz, A., Hyde, J.S., 1995. Real-time functional magnetic resonance imaging. Magn. Reson. Med. 33 (2): 230-2361. Here, we propose to directly model the entire complex or bivariate data rather than just the magnitude-only data. A nonlinear multiple regression model is used to model activation of the complex signal, and a likelihood ratio test is derived to determine activation in each voxel. We investigate the performance of the model on a real dataset, then compare the magnitude-only and complex models under varying signal-to-noise ratios in a simulation study with varying activation contrast effects. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1078 / 1092
页数:15
相关论文
共 22 条
[1]   Analysis of noise in phase contrast MR imaging [J].
Andersen, AH ;
Kirsch, JE .
MEDICAL PHYSICS, 1996, 23 (06) :857-869
[2]   PROCESSING STRATEGIES FOR TIME-COURSE DATA SETS IN FUNCTIONAL MRI OF THE HUMAN BRAIN [J].
BANDETTINI, PA ;
JESMANOWICZ, A ;
WONG, EC ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :161-173
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Statistical methods of estimation and inference for functional MR image analysis [J].
Bullmore, E ;
Brammer, M ;
Williams, SCR ;
Rabehesketh, S ;
Janot, N ;
David, A ;
Mellers, J ;
Howard, R ;
Sham, P .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (02) :261-277
[5]   Independent component analysis of fMRI data in the complex domain [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
van Zijl, PCM ;
Pekar, JJ .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (01) :180-192
[6]   REAL-TIME FUNCTIONAL MAGNETIC-RESONANCE-IMAGING [J].
COX, RW ;
JESMANOWICZ, A ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 33 (02) :230-236
[7]   Thresholding of statistical maps in functional neuroimaging using the false discovery rate [J].
Genovese, CR ;
Lazar, NA ;
Nichols, T .
NEUROIMAGE, 2002, 15 (04) :870-878
[8]  
Gonzalez R.C., 1992, DIGITAL IMAGE PROCES
[9]   THE RICIAN DISTRIBUTION OF NOISY MRI DATA [J].
GUDBJARTSSON, H ;
PATZ, S .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (06) :910-914
[10]  
Haacke EM, 1999, MAGNETIC RESONANCE I