An existence result for fluids with shear dependent viscosity - Steady flows

被引:71
作者
Frehse, J
Malek, J
Steinhauer, M
机构
[1] Inst Appl Math, D-53115 Bonn, Germany
[2] Charles Univ, Math Inst, Prague 18600 8, Czech Republic
关键词
non-Newtonian fluid; shear dependent viscosity steady flow; Dirichlet boundary condition; weak solution; Campanato space; John-Nirenberg space; Hardy space; almost everywhere convergence;
D O I
10.1016/S0362-546X(97)00392-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:3041 / 3049
页数:9
相关论文
共 11 条
[1]  
AMROUCHE C, 1994, CZECH MATH J, V44, P109
[2]  
Campanato S, 1965, ANN MAT PUR APPL, V69, P321, DOI 10.1007/BF02414377
[3]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247
[4]  
FUCHS M, 1995, 436 SFB U BONN
[5]  
FUCHS M, 1995, 437 SFB U BONN
[6]  
GIAQUINTA M, 1993, INTRO REGULARITY THE
[7]  
Lions J. L., 1969, QUELQUES METHODES RE
[8]   EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY [J].
MALEK, J ;
RAJAGOPAL, KR ;
RUZICKA, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (06) :789-812
[9]  
Malek J., 1996, APPL MATH MATH COMPU, V13
[10]  
MULLER S, 1994, TATRA MOUNTAINS MATH, V4, P159