Inference for clusters of extreme values

被引:249
作者
Ferro, CAT
Segers, J
机构
[1] Univ Reading, Dept Meteorol, Reading RG6 6BB, Berks, England
[2] EURANDOM, Eindhoven, Netherlands
关键词
bootstrap; declustering; extremal index; extreme values; interexceedance times;
D O I
10.1111/1467-9868.00401
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inference for clusters of extreme values of a time series typically requires the identification of independent clusters of exceedances over a high threshold. The choice of declustering scheme often has a significant effect on estimates of cluster characteristics. We propose an automatic declustering scheme that is justified by an asymptotic result for the times between threshold exceedances. The scheme relies on the extremal index, which we show may be estimated before declustering, and supports a bootstrap procedure for assessing the variability of estimates.
引用
收藏
页码:545 / 556
页数:12
相关论文
共 14 条
[1]  
DAVISON AC, 1990, J ROY STAT SOC B MET, V52, P393
[2]  
Ferro CAT, 2002, 2002025 EURANDOM
[3]   ON THE EXCEEDANCE POINT PROCESS FOR A STATIONARY SEQUENCE [J].
HSING, T ;
HUSLER, J ;
LEADBETTER, MR .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (01) :97-112
[4]   ON THE CHARACTERIZATION OF CERTAIN POINT-PROCESSES [J].
HSING, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 26 (02) :297-316
[5]   ESTIMATING THE PARAMETERS OF RARE EVENTS [J].
HSING, TL .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1991, 37 (01) :117-139
[6]  
Leadbetter M.R., 1983, EXTREMES RELATED PRO
[7]  
Leadbetter M.R., 1989, 253 U N CAR CTR STOC
[8]   ON HIGH-LEVEL EXCEEDANCE MODELING AND TAIL INFERENCE [J].
LEADBETTER, MR .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 45 (1-2) :247-260
[9]   EXTREMES AND LOCAL DEPENDENCE IN STATIONARY-SEQUENCES [J].
LEADBETTER, MR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02) :291-306
[10]   From value at risk to stress testing: The extreme value approach [J].
Longin, FM .
JOURNAL OF BANKING & FINANCE, 2000, 24 (07) :1097-1130