Mechanism of association and reciprocal activation of two GTPases

被引:81
作者
Shan, SO [1 ]
Stroud, RM
Walter, P
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94143 USA
来源
PLOS BIOLOGY | 2004年 / 2卷 / 10期
关键词
D O I
10.1371/journal.pbio.0020320
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The signal recognition particle (SRP) mediates the cotranslational targeting of nascent proteins to the eukaryotic endoplasmic reticulum membrane or the bacterial plasma membrane. During this process, two GTPases, one in SRP and one in the SRP receptor (named Ffh and FtsY in bacteria, respectively), form a complex in which both proteins reciprocally activate the GTPase reaction of one another. Here, we explore by site-directed mutagenesis the role of 45 conserved surface residues in the Ffh-FtsY interaction. Mutations of a large number of residues at the interface impair complex formation, supporting the importance of an extensive interaction surface. Surprisingly, even after a stable complex is formed, single mutations in FtsY can block the activation of GTP hydrolysis in both active sites. Thus, activation requires conformational changes across the interface that coordinate the positioning of catalytic residues in both GTPase sites. A distinct class of mutants exhibits half-site reactivity and thus allows us to further uncouple the activation of individual GTPases. Our dissection of the activation process suggests discrete conformational stages during formation of the active SRPcircleSRP receptor complex. Each stage provides a potential control point in the targeting reaction at which regulation by additional components can be exerted, thus ensuring the binding and release of cargo at the appropriate time.
引用
收藏
页码:1572 / 1581
页数:10
相关论文
共 26 条
[1]  
BOURNE HR, 1991, NATURE, V349, P117, DOI 10.1038/349117a0
[2]   REQUIREMENT OF GTP HYDROLYSIS FOR DISSOCIATION OF THE SIGNAL RECOGNITION PARTICLE FROM ITS RECEPTOR [J].
CONNOLLY, T ;
RAPIEJKO, PJ ;
GILMORE, R .
SCIENCE, 1991, 252 (5009) :1171-1173
[3]   THE SIGNAL RECOGNITION PARTICLE RECEPTOR MEDIATES THE GTP-DEPENDENT DISPLACEMENT OF SRP FROM THE SIGNAL SEQUENCE OF THE NASCENT POLYPEPTIDE [J].
CONNOLLY, T ;
GILMORE, R .
CELL, 1989, 57 (04) :599-610
[4]   Substrate twinning activates the signal recognition particle and its receptor [J].
Egea, PF ;
Shan, SO ;
Napetschnig, J ;
Savage, DF ;
Walter, P ;
Stroud, RM .
NATURE, 2004, 427 (6971) :215-221
[5]   Heterodimeric GTPase core of the SRP targeting complex [J].
Focia, PJ ;
Shepotinovskaya, IV ;
Seidler, JA ;
Freymann, DM .
SCIENCE, 2004, 303 (5656) :373-377
[6]   Structure of the conserved GTPase domain of the signal recognition particle [J].
Freymann, DM ;
Keenan, RJ ;
Stroud, RM ;
Walter, P .
NATURE, 1997, 385 (6614) :361-364
[7]   G-PROTEINS - TRANSDUCERS OF RECEPTOR-GENERATED SIGNALS [J].
GILMAN, AG .
ANNUAL REVIEW OF BIOCHEMISTRY, 1987, 56 :615-649
[8]   PROTEIN TRANSLOCATION ACROSS THE ENDOPLASMIC-RETICULUM .1. DETECTION IN THE MICROSOMAL MEMBRANE OF A RECEPTOR FOR THE SIGNAL RECOGNITION PARTICLE [J].
GILMORE, R ;
BLOBEL, G ;
WALTER, P .
JOURNAL OF CELL BIOLOGY, 1982, 95 (02) :463-469
[9]   PROTEIN TRANSLOCATION ACROSS THE ENDOPLASMIC-RETICULUM .2. ISOLATION AND CHARACTERIZATION OF THE SIGNAL RECOGNITION PARTICLE RECEPTOR [J].
GILMORE, R ;
WALTER, P ;
BLOBEL, G .
JOURNAL OF CELL BIOLOGY, 1982, 95 (02) :470-477
[10]  
HWANG YW, 1987, J BIOL CHEM, V262, P13081