The modifier of mdg4 locus in Drosophila:: functional complexity is resolved by trans splicing

被引:58
作者
Dorn, R [1 ]
Krauss, V [1 ]
机构
[1] Univ Leipzig, Dept Genet, D-04103 Leipzig, Germany
关键词
BTB/POZ domain; chromatin insulators; chromatin structure; FLYWCH motif; mod(mdg4); molecular evolution; position effect variegation; trans splicing;
D O I
10.1023/A:1022983810016
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The modifier of mdg4 (mod(mdg4)) gene of Drosophila melanogaster has been identified in many different genetic assays. It has been independently identified through mutations isolated for their effects on position effect variegation (PEV), the properties of insulator sequences, correct pathfinding of growing nerve cells, meiotic pairing of chromosomes, or apoptosis. Molecular analysis of the mod(mdg4) locus revealed that it encodes a family of at least 26 protein isoforms. Inspired by the fact that some mod(mdg4) transcripts are encoded by both antiparallel DNA strands, it was shown that mRNA trans splicing is the mechanism used by this locus to produce mature transcripts. All Mod(mdg4) protein isoforms share a common N-terminal region of 402 amino acids, which includes the conserved BTB/POZ domain. However, the isoforms differ in their C-terminal ends. Most of the C-termini contain a conserved Cys(2)His(2) protein motif, which we have named the FLYWCH motif. Genetic and immunological data indicate that mod(mdg4) encodes a family of related chromatin proteins. Recent results indicate a functional correlation between the large number of different isoforms and the pleiotropic mutant phenotypes of most mod(mdg4) mutations. We discuss the putative function of Mod(mdg4) proteins as chromatin modulators involved in higher order chromatin domains. We also provide evidence for the evolutionary conservation of several of the isoforms and the unusual structure of the locus.
引用
收藏
页码:165 / 177
页数:13
相关论文
共 59 条
[1]   Crystal structure of the BTB domain from PLZF [J].
Ahmad, KF ;
Engel, CK ;
Privé, GG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (21) :12123-12128
[2]   Origin of multicellular eukaryotes - insights from proteome comparisons [J].
Aravind, L ;
Subramanian, G .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1999, 9 (06) :688-694
[3]   THE POZ DOMAIN - A CONSERVED PROTEIN-PROTEIN INTERACTION MOTIF [J].
BARDWELL, VJ ;
TREISMAN, R .
GENES & DEVELOPMENT, 1994, 8 (14) :1664-1677
[4]   Gene regulation - Insulators and boundaries: Versatile regulatory elements in the eukaryotic genome [J].
Bell, AC ;
West, AG ;
Felsenfeld, G .
SCIENCE, 2001, 291 (5503) :447-450
[5]   Multiple isoforms of GAGA factor, a critical component of chromatin structure [J].
Benyajati, C ;
Mueller, L ;
Xu, N ;
Pappano, M ;
Gao, J ;
Mosammaparast, M ;
Conklin, D ;
Granok, H ;
Craig, C ;
Elgin, S .
NUCLEIC ACIDS RESEARCH, 1997, 25 (16) :3345-3353
[6]  
Bhat KM, 1996, DEVELOPMENT, V122, P1113
[7]  
Büchner K, 2000, GENETICS, V155, P141
[8]   All in the family: the BTB/POZ, KRAB, and SCAN domains [J].
Collins, T ;
Stone, JR ;
Williams, AJ .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (11) :3609-3615
[9]  
CORCES VG, 2000, CHROMATIN STRUCTURE, P278
[10]  
DALBY B, 1995, GENETICS, V139, P757