Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands

被引:48
作者
Smith, KP [1 ]
Byron, M [1 ]
Clemson, CM [1 ]
Lawrence, JB [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Cell Biol, Worcester, MA 01655 USA
关键词
D O I
10.1007/s00412-004-0325-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The inactive X chromosome (Xi) forms a heterochromatic structure in the nucleus that is known to have several modifications to specific histones involving acetylation or methylation. Using three different antibodies in four different cell lines, we demonstrate that the Xi in human and mouse cells is highly enriched in ubiquitinated protein(s), much of which is polyubiquitinated. This ubiquitination appears specific for the Xi as it was not observed for centromeres or other regions of heterochromatin. Results using an antibody specific to ubiquitinated H2A provide a clear link between H2A ubiquitination and gene repression, as visualized across an entire inactive chromosome. Interestingly, the ubiquitination of the chromosome persists into mitosis and can be seen in a reproducible banded pattern. This pattern matches that of Xist RNA which forms bands as it detaches from the mitotic X chromosome. Both ubiquitination and Xist RNA appear enriched in gene dense regions and depleted in gene poor bands, but do not correlate with L1 LINE elements which have been suggested as key to X-inactivation. These results provide evidence that ubiquitination along with Xist RNA plays an important role in the formation of facultative heterochromatin during X-inactivation.
引用
收藏
页码:324 / 335
页数:12
相关论文
共 45 条
[1]   Ubiquitin: not just for proteasomes anymore [J].
Aguilar, RC ;
Wendland, B .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :184-190
[2]   Orchestrating nuclear functions: ubiquitin sets the rhythm [J].
Bach, I ;
Ostendorff, HP .
TRENDS IN BIOCHEMICAL SCIENCES, 2003, 28 (04) :189-195
[3]   Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: The Lyon repeat hypothesis [J].
Bailey, JA ;
Carrel, L ;
Chakravarti, A ;
Eichler, EE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6634-6639
[4]   DIFFERENTIAL DISTRIBUTION OF LONG AND SHORT INTERSPERSED ELEMENT SEQUENCES IN THE MOUSE GENOME - CHROMOSOME KARYOTYPING BY FLUORESCENCE INSITU HYBRIDIZATION [J].
BOYLE, AL ;
BALLARD, SG ;
WARD, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (19) :7757-7761
[5]   Barring gene expression after XIST: maintaining facultative heterochromatin on the inactive X [J].
Chadwick, BP ;
Willard, HF .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2003, 14 (06) :359-367
[6]   Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome [J].
Chadwick, BP ;
Willard, HF .
JOURNAL OF CELL BIOLOGY, 2002, 157 (07) :1113-1123
[7]   Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant [J].
Chadwick, BP ;
Willard, HF .
HUMAN MOLECULAR GENETICS, 2001, 10 (10) :1101-1113
[8]   Ubiquitination of histone H3 in elongating spermatids of rat testes [J].
Chen, HY ;
Sun, JM ;
Zhang, Y ;
Davie, JR ;
Meistrich, ML .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :13165-13169
[9]   Forming facultative heterochromatin: silencing of an X chromosome in mammalian females [J].
Chow, JC ;
Brown, CJ .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2003, 60 (12) :2586-2603
[10]   Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine [J].
Chureau, C ;
Prissette, M ;
Bourdet, A ;
Barbe, V ;
Cattolico, L ;
Jones, L ;
Eggen, A ;
Avner, P ;
Duret, L .
GENOME RESEARCH, 2002, 12 (06) :894-908