On the well-balance property of Roe's method for nonconservative hyperbolic systems.: Applications to shallow-water systems

被引:171
作者
Parés, C [1 ]
Castro, M [1 ]
机构
[1] Univ Malaga, Fac Ciencias, Dept Anal Matemat, Malaga 29080, Spain
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2004年 / 38卷 / 05期
关键词
nonconservative hyperbolic systems; well-balanced schemes; Roe method; source terms; shallow-water systems;
D O I
10.1051/m2an:2004041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys. 102 ( 1992) 360-373]. Next, this general theory is applied to obtain well-balanced schemes for solving coupled systems of conservation laws with source terms. Finally, we focus on applications to shallow water systems: the numerical schemes obtained and their properties are compared, in the case of one layer flows, with those introduced by [Bermudez and Vazquez-Cendon, Comput. Fluids 23 ( 1994) 1049-1071]; in the case of two layer flows, they are compared with the numerical scheme presented by [Castro, Macias and Pares, ESAIM: M2AN 35 ( 2001) 107-127].
引用
收藏
页码:821 / 852
页数:32
相关论文
共 38 条
[1]   On the solution to the Riemann problem for the compressible duct flow [J].
Andrianov, N ;
Warnecke, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (03) :878-901
[2]  
[Anonymous], 1986, PROCEEDING C HYPERBO
[3]   UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS [J].
BERMUDEZ, A ;
VAZQUEZ, E .
COMPUTERS & FLUIDS, 1994, 23 (08) :1049-1071
[4]  
BOUCHUT F, 2002, FREE SURFACE GEOPHYS
[5]   A Q-scheme for a class of systems of coupled conservation laws with source term.: Application to a two-layer 1-D shallow water system [J].
Castro, M ;
Macías, J ;
Parés, C .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (01) :107-127
[6]   Numerical simulation of two-layer shallow water flows through channels with irregular geometry [J].
Castro, MJ ;
García-Rodríguez, JA ;
González-Vida, JM ;
Macías, J ;
Parés, C ;
Vázquez-Cendón, ME .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) :202-235
[7]  
CHACON T, 2003, ESAIM-MATH MODEL NUM, V37, P755
[8]  
CHACON T, 2003, INT J NUMER METH FL, V42, P23
[9]  
CHACON T, 2003, COMPUT METHODS APPL, V192, P203
[10]  
CHACON T, 2004, CR ACAD SCI I-MATH, V338, P85