Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations

被引:309
作者
Baurmann, Martin [1 ]
Gross, Thilo
Feudel, Ulrike
机构
[1] Carl Von Ossietzky Univ Oldenburg, Inst Chem & Biol Marine Environm, D-26111 Oldenburg, Germany
[2] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
关键词
predator-prey models; Turing-Hopf bifurcation; Turing-Takens-Bogdanov bifurcation; pattern formation;
D O I
10.1016/j.jtbi.2006.09.036
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the emergence of spatio-temporal patterns in ecological systems. In particular, we study a generalized predator-prey system on a spatial domain. On this domain diffusion is considered as the principal process of motion. We derive the conditions for Hopf and Turing instabilities without specifying the predator-prey functional responses and discuss their biological implications. Furthermore, we identify the codimension-2 Turing-Hopf bifurcation and the codimension-3 Turing-Takens-Bogdanov bifurcation. These bifurcations give rise to complex pattern formation processes in their neighborhood. Our theoretical findings are illustrated with a specific model. In simulations a large variety of different types of long-term behavior, including homogenous distributions, stationary spatial patterns and complex spatio-temporal patterns, are observed. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:220 / 229
页数:10
相关论文
共 39 条
[1]  
Alonso D, 2002, ECOLOGY, V83, P28
[2]   Self-organized spatial structures in a ratio-dependent predator-prey model [J].
Bartumeus, F ;
Alonso, D ;
Catalan, J .
PHYSICA A, 2001, 295 (1-2) :53-57
[3]   Turing instabilities and pattern formation in a benthic nutrient-microorganism system [J].
Baurmann, M ;
Ebenhöh, W ;
Feudel, U .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2004, 1 (01) :111-130
[4]  
Bazykin A. D., 1998, NONLINEAR DYNAMICS I, V11
[5]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[6]   Spatiotemporal dynamics near a codimension-two point [J].
DeWit, A ;
Lima, D ;
Dewel, G ;
Borckmans, P .
PHYSICAL REVIEW E, 1996, 54 (01) :261-271
[7]   Generic dynamics of a simple plankton population model with a non-integer exponent of closure [J].
Edwards, AM ;
Bees, MA .
CHAOS SOLITONS & FRACTALS, 2001, 12 (02) :289-300
[8]   The role of higher predation in plankton population models [J].
Edwards, AM ;
Yool, A .
JOURNAL OF PLANKTON RESEARCH, 2000, 22 (06) :1085-1112
[9]  
Grosch T., 2006, PHYS REV E, P1
[10]   Analytical search for bifurcation surfaces in parameter space [J].
Gross, T ;
Feudel, U .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (3-4) :292-302