Vascular endothelial growth factor-mediated induction of manganese superoxide dismutase occurs through redox-dependent regulation of forkhead and IκB/NF-κB

被引:88
作者
Abid, MR
Schoots, IG
Spokes, KC
Wu, SQ
Mawhinney, C
Aird, WC
机构
[1] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Dept Med,Div Mol & Vasc Med, Boston, MA 02215 USA
[2] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Vasc Biol Res Ctr, Boston, MA 02215 USA
关键词
D O I
10.1074/jbc.M408285200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mitochondrial antioxidant manganese superoxide dismutase (Mn-SOD) plays a critical cytoprotective role against oxidative stress. Vascular endothelial growth factor (VEGF) was shown previously to induce expression of Mn-SOD in endothelial cells by a NADPH oxidase-dependent mechanism. The goal of the current study was to determine the transcriptional mechanisms underlying this phenomenon. VEGF resulted in protein kinase C-dependent phosphorylation of IkappaB and subsequent translocation of p65 NF-kappaB into the nucleus. Overexpression of constitutively active IkappaB blocked VEGF stimulation of Mn-SOD. In transient transfection assays, VEGF increased Mn-SOD promoter activity, an effect that was dependent on a second intronic NF-kappaB consensus motif. In contrast, VEGF-mediated induction of Mn-SOD was enhanced by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and by dominant negative Akt and was decreased by constitutively active Akt. Overexpression of a constitutively active (phosphorylation-resistant) form of FKHRL1 (TM-FKHRL1) resulted in increased Mn-SOD expression, suggesting that the negative effect of PI3K-Akt involves attenuation of forkhead activity. In co-transfection assays, the Mn-SOD promoter was transactivated by TM-FKHRL1. Flavoenzyme inhibitor, diphenyleneiodonium (DPI), and antisense oligonucleotides against p47(phox) (AS-p47(phox)) inhibited VEGF stimulation of IkappaB/NF-kappaB and forkhead phosphorylation, supporting a role for NADPH oxidase activity in both signaling pathways. Like VEGF, hepatocyte growth factor (HGF) activated the PI3K-Akt-forkhead pathway. However, HGF-PI3K-Akt-forkhead signaling was insensitive to diphenyleneiodonium and AS-p47(phox). Moreover, HGF failed to induce phosphorylation of IkappaB/NF-kappaB or nuclear translocation of NF-kappaB and had no effect on Mn-SOD expression. Together, these data suggest that VEGF is uniquely coupled to Mn-SOD expression through growth factor-specific reactive oxygen species (ROS)-sensitive positive (protein kinase C-NF-kappaB) and negative (PI3K-Akt-forkhead) signaling pathways.
引用
收藏
页码:44030 / 44038
页数:9
相关论文
共 51 条
[1]   Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism [J].
Abid, MR ;
Tsai, JC ;
Spokes, KC ;
Deshpande, SS ;
Irani, K ;
Aird, WC .
FASEB JOURNAL, 2001, 15 (11) :2548-+
[2]   NADPH oxidase activity is required for endothelial cell proliferation and migration [J].
Abid, MR ;
Kachra, Z ;
Spokes, KC ;
Aird, WC .
FEBS LETTERS, 2000, 486 (03) :252-256
[3]   Vascular endothelial growth factor activates PI3K/Akt/forkhead signaling in endothelial cells [J].
Abid, R ;
Guo, SD ;
Minami, T ;
Spokes, KC ;
Ueki, K ;
Skurk, C ;
Walsh, K ;
Aird, WC .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2004, 24 (02) :294-300
[4]   Role of Raf in vascular protection from distinct apoptotic stimuli [J].
Alavi, A ;
Hood, JD ;
Frausto, R ;
Stupack, DG ;
Cheresh, DA .
SCIENCE, 2003, 301 (5629) :94-96
[5]   VASCULAR ENDOTHELIAL GROWTH-FACTOR ACTS AS A SURVIVAL FACTOR FOR NEWLY FORMED RETINAL-VESSELS AND HAS IMPLICATIONS FOR RETINOPATHY OF PREMATURITY [J].
ALON, T ;
HEMO, I ;
ITIN, A ;
PEER, J ;
STONE, J ;
KESHET, E .
NATURE MEDICINE, 1995, 1 (10) :1024-1028
[6]   The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD [J].
Bernard, D ;
Monte, D ;
Vandenbunder, B ;
Abbadie, C .
ONCOGENE, 2002, 21 (28) :4392-4402
[7]  
Bey EA, 2000, J LIPID RES, V41, P489
[8]   Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-κB to protect endothelial cells from tumor necrosis factor-α-mediated apoptosis [J].
Brouard, S ;
Berberat, PO ;
Tobiasch, E ;
Seldon, MP ;
Bach, FH ;
Soares, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (20) :17950-17961
[9]   HEPATOCYTE GROWTH-FACTOR IS A POTENT ANGIOGENIC FACTOR WHICH STIMULATES ENDOTHELIAL-CELL MOTILITY AND GROWTH [J].
BUSSOLINO, F ;
DIRENZO, MF ;
ZICHE, M ;
BOCCHIETTO, E ;
OLIVERO, M ;
NALDINI, L ;
GAUDINO, G ;
TAMAGNONE, L ;
COFFER, A ;
COMOGLIO, PM .
JOURNAL OF CELL BIOLOGY, 1992, 119 (03) :629-641
[10]  
Chen ZQ, 1997, CANCER RES, V57, P2013