The traffic equilibrium problem with nonadditive path costs

被引:126
作者
Gabriel, SA
Bernstein, D
机构
[1] ICF Kaiser Int Inc, Fairfax, VA 22031 USA
[2] Princeton Univ, Dept Civil Engn & Operat Res, Princeton, NJ 08544 USA
关键词
D O I
10.1287/trsc.31.4.337
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we present a version of the (static) traffic equilibrium problem in which the cost incurred on each path is not simply the sum of the costs on the arcs that constitute that path. We motivate this nonadditive version of the problem by describing several situations in which the classic additivity assumption fails. We describe existence and uniqueness conditions for this problem, and toe also present convergence theory for a generic algorithm for solving nonadditive problems.
引用
收藏
页码:337 / 348
页数:12
相关论文
共 33 条
[1]  
AASHTIANI H, 1979, THESIS MIT
[2]   EQUILIBRIA ON A CONGESTED TRANSPORTATION NETWORK [J].
AASHTIANI, HZ ;
MAGNANTI, TL .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1981, 2 (03) :213-226
[3]  
ASMUTH RL, 1978, THESIS STANFORD U
[4]  
Beckmann MJ, 1956, Technical report
[5]  
Bernstein D., 1993, IVHS Journal, V1, P191, DOI 10.1080/10248079308903792
[6]  
BERNSTEIN D, IN PRESS P NETW OPT
[7]  
BERNSTEIN D, 1984, TRANSPORT SCI, V28, P221
[8]  
BERTSEKAS DP, 1982, MATH PROGRAM STUD, V17, P139
[9]   THE GENERAL MULTIMODAL NETWORK EQUILIBRIUM PROBLEM WITH ELASTIC DEMAND [J].
DAFERMOS, S .
NETWORKS, 1982, 12 (01) :57-72
[10]   TRAFFIC EQUILIBRIUM AND VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
TRANSPORTATION SCIENCE, 1980, 14 (01) :42-54