Mining frequent itemsets from secondary memory

被引:22
作者
Grahne, G [1 ]
Zhu, JF [1 ]
机构
[1] Concordia Univ, Montreal, PQ, Canada
来源
FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2004年
关键词
D O I
10.1109/ICDM.2004.10116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mining frequent itemsets is at the core of mining association rules, and is by now quite well understood algorithmically for main memory databases. In this paper we investigate approaches to mining frequent itemsets when the database or the data structures used in the mining are too large to fit in main memory. Experimental results show that our techniques reduce the required disk accesses by orders of magnitude, and enable truly scalable data mining.
引用
收藏
页码:91 / 98
页数:8
相关论文
共 12 条
  • [1] Agarwal R. C., 2000, Proceedings. KDD-2000. Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P108, DOI 10.1145/347090.347114
  • [2] Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
  • [3] AGRAWAL R, 1995, PROC INT CONF DATA, P3, DOI 10.1109/ICDE.1995.380415
  • [4] Agrawal R, 1994, P 20 INT C VER LARG, V1215, P487
  • [5] GOETHALS B, 2003, P 1 IEEE ICDM WORKSH
  • [6] GRAHNE G, 2003, 1 IEEE ICDM WORKSH F
  • [7] Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    Han, JW
    Pei, J
    Yin, YW
    Mao, RY
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2004, 8 (01) : 53 - 87
  • [8] Kamber M., 1997, Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, P207
  • [9] Discovery of frequent episodes in event sequences
    Mannila, H
    Toivonen, H
    Verkamo, AI
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1997, 1 (03) : 259 - 289
  • [10] Savasere A., 1995, VLDB '95. Proceedings of the 21st International Conference on Very Large Data Bases, P432