Metastability in the two-dimensional Ising model with free boundary conditions

被引:39
作者
Cirillo, ENM [1 ]
Lebowitz, JL
机构
[1] Rutgers State Univ, Dept Math & Phys, New Brunswick, NJ 08903 USA
[2] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[3] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
关键词
Ising model; stochastic dynamics; metastability; nucleation;
D O I
10.1023/A:1023255802455
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate metastability in the two dimensional Ising model in a square with free boundary conditions at low temperatures. Starting with all spins down in a small positive magnetic field, we show that the exit From this metastable phase occurs via the nucleation of a critical droplet in one of the four corners of the system. We compute the lifetime of the metastable phase analytically in the limit T --> 0, h --> 0 and via Monte Carlo simulations at fixed Values of T and h and find good agreement. This system models the effects of boundary domains in magnetic storage systems exiting from a metastable phase when a small external field is applied.
引用
收藏
页码:211 / 226
页数:16
相关论文
共 38 条
[1]  
BENAROUS G, 1996, ELECTRON J PROBAB, V1, P1
[2]   TIME-DEPENDENT GINZBURG-LANDAU THEORY OF NONEQUILIBRIUM RELAXATION [J].
BINDER, K .
PHYSICAL REVIEW B, 1973, 8 (07) :3423-3438
[3]   SCALING THEORY FOR METASTABLE STATES AND THEIR LIFETIMES [J].
BINDER, K ;
STOLL, E .
PHYSICAL REVIEW LETTERS, 1973, 31 (01) :47-51
[4]   INVESTIGATION OF METASTABLE STATES AND NUCLEATION IN KINETIC ISING-MODEL [J].
BINDER, K ;
MULLERKR.H .
PHYSICAL REVIEW B, 1974, 9 (05) :2328-2353
[5]   METASTABLE BEHAVIOR OF STOCHASTIC DYNAMICS - A PATHWISE APPROACH [J].
CASSANDRO, M ;
GALVES, A ;
OLIVIERI, E ;
VARES, ME .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) :603-634
[6]   Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition [J].
Cirillo, ENM ;
Olivieri, E .
JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (3-4) :473-554
[7]   NUMERICAL TRANSFER-MATRIX STUDY OF A MODEL WITH COMPETING METASTABLE STATES [J].
FIIG, T ;
GORMAN, BM ;
RIKVOLD, PA ;
NOVOTNY, MA .
PHYSICAL REVIEW E, 1994, 50 (03) :1930-1947
[8]   NUMERICAL TRANSFER-MATRIX STUDY OF METASTABILITY IN THE D = 2 ISING-MODEL [J].
GUNTHER, CCA ;
RIKVOLD, PA ;
NOVOTNY, MA .
PHYSICAL REVIEW LETTERS, 1993, 71 (24) :3898-3901
[9]   APPLICATION OF A CONSTRAINED-TRANSFER-MATRIX METHOD TO METASTABILITY IN THE D=2 ISING FERROMAGNET [J].
GUNTHER, CCA ;
RIKVOLD, PA ;
NOVOTNY, MA .
PHYSICA A, 1994, 212 (1-2) :194-229