PCA disjoint models for multiclass cancer analysis using gene expression data

被引:92
作者
Bicciato, S [1 ]
Luchini, A [1 ]
Di Bello, C [1 ]
机构
[1] Univ Padua, Dept Chem Proc Engn, I-35131 Padua, Italy
关键词
D O I
10.1093/bioinformatics/btg051
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Microarray expression profiling appears particularly promising for a deeper understanding of cancer biology and to identify molecular signatures supporting the histological classification schemes of neoplastic specimens. However, molecular diagnostics based on microarray data presents major challenges due to the overwhelming number of variables and the complex, multiclass nature of tumor samples. Thus, the development of marker selection methods, that allow the identification of those genes that are most likely to confer high classification accuracy of multiple tumor types, and of multiclass classification schemes is of paramount importance. Results: A computational procedure for marker identification and for classification of multiclass gene expression data through the application of disjoint principal component models is described. The identified features represent a rational and dimensionally reduced base for understanding the basic biology of diseases, defining targets for therapeutic intervention, and developing diagnostic tools for the identification and classification of multiple pathological states. The method has been tested on different microarray data sets obtained from various human tumor samples. The results demonstrate that this procedure allows the identification of specific phenotype markers and can classify previously unseen instances in the presence of multiple classes.
引用
收藏
页码:571 / 578
页数:8
相关论文
共 20 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[4]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[5]   Identifying marker genes in transcription profiling data using a mixture of feature relevance experts [J].
Chow, ML ;
Moler, EJ ;
Mian, IS .
PHYSIOLOGICAL GENOMICS, 2001, 5 (02) :99-111
[6]   Decision criteria for soft independent modelling of class analogy applied to near infrared data [J].
De Maesschalck, R ;
Candolfi, A ;
Massart, DL ;
Heuerding, S .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1999, 47 (01) :65-77
[7]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[8]  
Joliffe I.T., 1986, Principal Component Analysis
[9]  
KELLER AD, 2000, UWCSE20000801
[10]   Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [J].
Khan, J ;
Wei, JS ;
Ringnér, M ;
Saal, LH ;
Ladanyi, M ;
Westermann, F ;
Berthold, F ;
Schwab, M ;
Antonescu, CR ;
Peterson, C ;
Meltzer, PS .
NATURE MEDICINE, 2001, 7 (06) :673-679