Computing integral points in convex semi-algebraic sets
被引:11
作者:
Khachiyan, L
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USARutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USA
Khachiyan, L
[1
]
Porkolab, L
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USARutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USA
Porkolab, L
[1
]
机构:
[1] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USA
来源:
38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS
|
1997年
关键词:
D O I:
10.1109/SFCS.1997.646105
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
Let Y be a convex set in R-k defined by polynomial inequalities and equations of degree at most d greater than or equal to 2 with integer coefficients of binary length l. We show that if Y Omega ZZ(k) not equal 0, then Y contains an integral point of binary length ld(O(k4)). For fixed k, our bound implies a polynomial-time algorithm for computing an integral point y is an element of Y. In particular, we extend Lenstra's theorem on the polynomial-time solvability of linear integer programming in fixed dimension to semidefinite integer programming.