Computing integral points in convex semi-algebraic sets

被引:11
作者
Khachiyan, L [1 ]
Porkolab, L [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, New Brunswick, NJ 08903 USA
来源
38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS | 1997年
关键词
D O I
10.1109/SFCS.1997.646105
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let Y be a convex set in R-k defined by polynomial inequalities and equations of degree at most d greater than or equal to 2 with integer coefficients of binary length l. We show that if Y Omega ZZ(k) not equal 0, then Y contains an integral point of binary length ld(O(k4)). For fixed k, our bound implies a polynomial-time algorithm for computing an integral point y is an element of Y. In particular, we extend Lenstra's theorem on the polynomial-time solvability of linear integer programming in fixed dimension to semidefinite integer programming.
引用
收藏
页码:162 / 171
页数:10
相关论文
empty
未找到相关数据