Short-time critical dynamics of statistical systems and field theory

被引:3
作者
Okano, K [1 ]
Schulke, L
Zheng, B
机构
[1] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA
[2] Univ Gesamthsch Siegen, Fachbereich 7, D-57068 Siegen, Germany
关键词
D O I
10.1007/BF02551449
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent investigation on the short-time dynamic scaling of critical dynamics is reviewed, with the aim of applying it to the field theory. The contents of this paper are as follows: (1) Short-time behavior of the critical relaxation dynamics, (2) Numerical evidence of the short-time scaling-2-dimensional Ising model and Universality, (3) Theoretical background of the generalized scaling form, (4) Application to a field theoretical model-(2 + 1)-dimensional SU(2) lattice gauge theory at finite temperature, and (5) Concluding remarks.
引用
收藏
页码:1739 / 1764
页数:26
相关论文
共 36 条
[1]   EQUIVALENCE OF STOCHASTIC QUANTIZATION AND THE FADDEEV-POPOV ANSATZ [J].
BAULIEU, L ;
ZWANZIGER, D .
NUCLEAR PHYSICS B, 1981, 193 (01) :163-172
[2]   RENORMALIZED FIELD-THEORY OF CRITICAL DYNAMICS [J].
BAUSCH, R ;
JANSSEN, HK ;
WAGNER, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 24 (01) :113-127
[3]  
BREZIN E, 1975, PHYS REV B, V12, P4954, DOI 10.1103/PhysRevB.12.4954
[4]   CRITICAL-BEHAVIOR AT THE DECONFINEMENT PHASE-TRANSITION OF SU(2) LATTICE GAUGE-THEORY IN (2 + 1) DIMENSIONS [J].
CHRISTENSEN, J ;
DAMGAARD, PH .
NUCLEAR PHYSICS B, 1991, 348 (01) :226-256
[5]   STOCHASTIC QUANTIZATION [J].
DAMGAARD, PH ;
HUFFEL, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 152 (5-6) :227-+
[6]   FIELD-THEORETIC TECHNIQUES AND CRITICAL DYNAMICS .1. GINZBURG-LANDAU STOCHASTIC-MODELS WITHOUT ENERGY-CONSERVATION [J].
DEDOMINICIS, C ;
BREZIN, E ;
ZINNJUSTIN, J .
PHYSICAL REVIEW B, 1975, 12 (11) :4945-4953
[7]   DAMAGE SPREADING AND CRITICAL EXPONENTS FOR MODEL-A ISING DYNAMICS [J].
GRASSBERGER, P .
PHYSICA A, 1995, 214 (04) :547-559
[8]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[9]   NONEQUILIBRIUM DYNAMICS OF THE ISING-MODEL FOR T-LESS-THAN-OR-EQUAL-TO-TC [J].
HUMAYUN, K ;
BRAY, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (08) :1915-1930
[10]   REMANENT MAGNETIZATION DECAY AT THE SPIN-GLASS CRITICAL-POINT - A NEW DYNAMIC CRITICAL EXPONENT FOR NONEQUILIBRIUM AUTOCORRELATIONS [J].
HUSE, DA .
PHYSICAL REVIEW B, 1989, 40 (01) :304-308