This study explores the significance of shape differences in the maxillary first molar crowns of Neandertals and anatomically modern humans. It uses morphometric analysis to quantify these differences and to investigate how the orientation of major cusps, relative cusp base areas and occlusal polygon area influence crown shape. The aims of this study were to 1) quantify these data to test whether the tooth shapes of Neandertals and anatomically modern humans differ significantly and 2) to explore if either of the shapes is derived relative to earlier fossil hominins. Data were collected from digital occlusal photographs using image-processing software. Cusp angles, relative cusp base areas and occlusal polygon areas were measured on Neandertals (n = 15), contemporary modern humans (n = 62), Upper Palcolithic humans (n = 6), early anatomically modern humans (n = 3) and Homo erectus (n = 3). Univariate and multivariate statistical tests were used to evaluate the differences between contemporary modern humans and Neandertals, while the much sparser data sets from the other fossil samples were included primarily for comparison. Statistically significant differences reflecting overall crown shape and internal placement of the crown apices were found. Neandertals are distinguished from contemporary humans by possessing maxillary first molars that 1) are markedly skewed; 2) possess a narrower distal segment of the occlusal polygon compared to the mesial segment; 3) possess a significantly smaller metacone and a significantly larger hypoconel; and 4) possess a significantly smaller relative occlusal polygon area reflecting internally placed cusps. Differences in relative cusp base areas of the hypocone and metacone may contribute to the shape differences observed in Neandertals. However, early anatomically modern humans possessing a pattern of relative cusp base areas similar to Neandertals lack their unusual shape. That the morphology observed in non-Neandertal fossil hominins is more anatomically modern human-like than Neandertal-like, suggests that this distinctive morphology may be derived in Neandertals. (C) 2004 Elsevier Ltd. All rights reserved.