PGC-1α over-expression promotes recovery from mitochondrial dysfunction and cell injury

被引:112
作者
Rasbach, Kyle A. [1 ]
Schnellmann, Rick G. [1 ]
机构
[1] Med Univ S Carolina, Dept Pharmaceut Sci, Charleston, SC 29425 USA
关键词
ischemia-reperfusion; cell death; mitochondrial biogenesis; PGC-1; alpha; mitochondrial function; oxidant; renal cells; BOVINE HEART-MITOCHONDRIA; PROXIMAL TUBULE CELLS; NADH-DEHYDROGENASE; COACTIVATOR PGC-1; TRAUMA-HEMORRHAGE; OXIDATIVE STRESS; OXIDANT INJURY; UP-REGULATION; RENAL-CELLS; METABOLISM;
D O I
10.1016/j.bbrc.2007.02.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cell death from mitochondrial dysfunction and compromised bioenergetics is common after ischemia-reperfusion injury and toxicant exposure. Thus, promoting mitochondrial biogenesis is therapeutically attractive for sustaining oxidative phosphorylation and maintaining ATP-dependent cellular functions. Here, we evaluated increased mitochondrial biogenesis prior to or after oxidant exposure in primary cultures of renal proximal tubular cells (RPTC). Over-expression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1 alpha (PGC-1 alpha) in control RTPC increased basal and uncoupled cellular respiration, ATP, and mitochondria. Increasing mitochondrial number/function prior to oxidant exposure did not preserve mitochondrial function, but potentiated dysfunction and cell death. However, increased mitochondrial biogenesis after oxidant injury accelerated recovery of mitochondrial function. In oxidant treated RPTC, mitochondrial protein expression was reduced by 50%. Also, ATP and cellular respiration decreased 48 h after oxidant exposure, whereas mitochondrial function in injured RPTC over-expressing PGG-1 alpha returned to control values. Thus, up-regulation of mitochondrial biogenesis after oxidant exposure accelerates recovery of mitochondrial and cellular functions. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:734 / 739
页数:6
相关论文
共 35 条
[1]   OXIDANT-INDUCED ALTERATIONS IN GLUCOSE AND PHOSPHATE-TRANSPORT IN LLC-PK1 CELLS - MECHANISMS OF INJURY [J].
ANDREOLI, SP ;
MCATEER, JA ;
SEIFERT, SA ;
KEMPSON, SA .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 265 (03) :F377-F384
[2]   Cisplatin nephrotoxicity [J].
Arany, I ;
Safirstein, RL .
SEMINARS IN NEPHROLOGY, 2003, 23 (05) :460-464
[3]   Activation of ERK or inhibition of JNK ameliorates H2O2 cytotoxicity in mouse renal proximal tubule cells [J].
Arany, I ;
Megyesi, JK ;
Kaneto, H ;
Tanaka, S ;
Safirstein, RL .
KIDNEY INTERNATIONAL, 2004, 65 (04) :1231-1239
[4]   METABOLIC SUBSTRATE UTILIZATION BY RABBIT PROXIMAL TUBULE - AN NADH FLUORESCENCE STUDY [J].
BALABAN, RS ;
MANDEL, LJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1988, 254 (03) :F407-F416
[5]   Recent advances in the pathophysiology of ischemic acute renal failure [J].
Bonventre, JV ;
Weinberg, JM .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (08) :2199-2210
[6]   ROLE OF OXYGEN FREE-RADICAL SPECIES IN INVITRO MODELS OF PROXIMAL TUBULAR ISCHEMIA [J].
BORKAN, SC ;
SCHWARTZ, JH .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (01) :F114-F125
[7]   Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1α [J].
Borniquel, Sara ;
Valle, Inmaculada ;
Cadenas, Susana ;
Lamas, Santiago ;
Monsalve, Maria .
FASEB JOURNAL, 2006, 20 (11) :1889-+
[8]  
Choi Se Sik, 1994, Korean Journal of Internal Medicine (English Edition), V9, P105
[9]   Assessment of mitochondrial membrane potential in proximal tubules after hypoxia-reoxygenation [J].
Feldkamp, T ;
Kribben, A ;
Weinberg, JM .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2005, 288 (06) :F1092-F1102
[10]   METABOLISM OF ISOLATED KIDNEY-TUBULES - INTERACTIONS BETWEEN LACTATE, GLUTAMINE AND OLEATE METABOLISM [J].
GUDER, WG ;
WIRTHENSOHN, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1979, 99 (03) :577-584