A chaotic attractor in ecology: theory and experimental data

被引:32
作者
Cushing, JM
Henson, SM
Desharnais, RA
Dennis, B
Costantino, RF
King, A
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[3] Calif State Univ Los Angeles, Dept Biol & Microbiol, Los Angeles, CA 90032 USA
[4] Univ Idaho, Dept Fish & Wildlife Resources, Moscow, ID 83844 USA
[5] Univ Idaho, Div Stat, Moscow, ID 83844 USA
[6] Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA
[7] Univ Arizona, Interdisciplinary Program Appl Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0960-0779(00)00109-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chaos has now been documented in a laboratory population. In controlled laboratory experiments, cultures of flour beetles (Tribolium castaneum) undergo bifurcations in their dynamics as demographic parameters are manipulated. These bifurcations, including a specific route to chaos, are predicted by a well-validated deterministic model called the "LPA model". The LPA model isl based on the nonlinear interactions among the life cycle stages of the beetle (larva, pupa and adult). A stochastic version of the model accounts for the deviations of data from the deterministic model and provides the means for parameterization and rigorous statistical validation. The chaotic attractor of the deterministic LPA model and the stationary distribution of the stochastic LPA model describe the experimental data in phase space with striking accuracy. In addition, model-predicted temporal patterns on the attractor are observed in the data. This paper gives a brief account of the interdisciplinary effort that obtained these results. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:219 / 234
页数:16
相关论文
共 28 条
[1]  
Aber J.D., 1997, B ECOL SOC AM, V78, P232
[2]  
Alligood K. T., 1997, CHAOS INTRO DYNAMICA
[3]  
[Anonymous], CBMS NSF REGIONAL C
[4]  
BENIOT HP, 1998, ECOLOGY, V79, P2839
[5]   EXPERIMENTALLY-INDUCED TRANSITIONS IN THE DYNAMIC BEHAVIOR OF INSECT POPULATIONS [J].
COSTANTINO, RF ;
CUSHING, JM ;
DENNIS, B ;
DESHARNAIS, RA .
NATURE, 1995, 375 (6528) :227-230
[6]   Chaotic dynamics in an insect population [J].
Costantino, RF ;
Desharnais, RA ;
Cushing, JM ;
Dennis, B .
SCIENCE, 1997, 275 (5298) :389-391
[7]   Resonant population cycles in temporally fluctuating habitats [J].
Costantino, RF ;
Cushing, JM ;
Dennis, B ;
Desharnais, RA ;
Henson, SM .
BULLETIN OF MATHEMATICAL BIOLOGY, 1998, 60 (02) :247-273
[8]   Nonlinear population dynamics: Models, experiments and data [J].
Cushing, JM ;
Costantino, RF ;
Dennis, B ;
Desharnais, RA ;
Henson, SM .
JOURNAL OF THEORETICAL BIOLOGY, 1998, 194 (01) :1-9
[9]   Moving toward an unstable equilibrium: saddle nodes in population systems [J].
Cushing, JM ;
Dennis, B ;
Desharnais, RA ;
Costantino, RF .
JOURNAL OF ANIMAL ECOLOGY, 1998, 67 (02) :298-306
[10]   Transitions in population dynamics: Equilibria to periodic cycles to aperiodic cycles [J].
Dennis, B ;
Desharnais, RA ;
Cushing, JM ;
Costantino, RF .
JOURNAL OF ANIMAL ECOLOGY, 1997, 66 (05) :704-729