Interband cascade lasers: progress and outlook

被引:8
作者
Bruno, JD [1 ]
Bradshaw, JL [1 ]
Breznay, NP [1 ]
Gomes, JG [1 ]
Tober, RL [1 ]
Tobin, MS [1 ]
Towner, FJ [1 ]
机构
[1] Max Technol Inc, Hyattsville, MD 20782 USA
来源
OPTICALLY BASED BIOLOGICAL AND CHEMICAL SENSING FOR DEFENCE | 2004年 / 5617卷
关键词
mid-IR lasers; interband cascade lasers; quantum cascade lasers; antimonides;
D O I
10.1117/12.583531
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Type-II Interband cascade lasers combine interband optical transitions with interband tunneling to enable the cascading of type-II quantum well active regions. This combination allows for low threshold current densities and high external slope efficiencies, both of which are important for high temperature, high power operation. Experimental results have already demonstrated some of this potential including high differential external quantum efficiency (>600%), high peak Output powers (similar to6 W/facet at 80 K), high cw power conversion efficiency (>32% at 80 K), and lasing above 315 K under pulsed conditions. However, cw operation at high temperature has not yet been achieved present generation 3.6-mum-wavelength interband cascade lasers fail to operate under cw conditions at heat sink temperatures above similar to214 K. Past performance highlights and recent advances are described, followed by a discussion of issues that continue to limit high temperature, cw performance. The outlook for improving device performance is presented, including a discussion of areas where further research is needed.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 24 条
[1]  
Arzhanov E. V., 1994, Quantum Electronics, V24, P581, DOI 10.1070/QE1994v024n07ABEH000144
[2]   Continuous wave operation of a mid-infrared semiconductor laser at room temperature [J].
Beck, M ;
Hofstetter, D ;
Aellen, T ;
Faist, J ;
Oesterle, U ;
Ilegems, M ;
Gini, E ;
Melchior, H .
SCIENCE, 2002, 295 (5553) :301-305
[3]  
BEWLEY WW, 2004, PHYSICA E, V20, P446
[4]  
Borca -Tasciuc T., 2000, P HEAT TRANSF TRANSP, P369
[5]   Recent progress in the development of type II interband cascade lasers [J].
Bradshaw, JL ;
Breznay, NP ;
Bruno, JD ;
Gomes, JM ;
Pham, JT ;
Towner, FJ ;
Wortman, DE ;
Tober, RL ;
Monroy, CJ ;
Olver, KA .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 20 (3-4) :479-485
[6]   Single-longitudinal-mode emission from interband cascade DFB laser with a grating fabricated by interferometric lithography [J].
Bradshaw, JL ;
Bruno, JD ;
Pham, JT ;
Wortman, DE ;
Zhang, S ;
Brueck, SRJ .
IEE PROCEEDINGS-OPTOELECTRONICS, 2003, 150 (04) :288-292
[7]   High-efficiency interband cascade lasers with peak power exceeding 4 W/facet [J].
Bradshaw, JL ;
Yang, RQ ;
Bruno, JD ;
Pham, JT ;
Wortman, DE .
APPLIED PHYSICS LETTERS, 1999, 75 (16) :2362-2364
[8]   Low-threshold interband cascade lasers with power efficiency exceeding 9% [J].
Bruno, JD ;
Bradshaw, JL ;
Yang, RQ ;
Pham, JT ;
Wortman, DE .
APPLIED PHYSICS LETTERS, 2000, 76 (22) :3167-3169
[9]   Continuous-wave operation of λ∼4.8 μm quantum-cascade lasers at room temperature [J].
Evans, A ;
Yu, JS ;
Slivken, S ;
Razeghi, M .
APPLIED PHYSICS LETTERS, 2004, 85 (12) :2166-2168
[10]   High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers [J].
Evans, A ;
Yu, JS ;
David, J ;
Doris, L ;
Mi, K ;
Slivken, S ;
Razeghi, M .
APPLIED PHYSICS LETTERS, 2004, 84 (03) :314-316