Discrete nonlinear Schrodinger equation with defects

被引:23
作者
Trombettoni, A [1 ]
Smerzi, A
Bishop, AR
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[4] Univ Perugia, Sez INFN, I-06123 Perugia, Italy
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 01期
关键词
D O I
10.1103/PhysRevE.67.016607
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the dynamical properties of the one-dimensional discrete nonlinear Schrodinger equation (DNLS) with periodic boundary conditions and with an arbitrary distribution of on-site defects. We study the propagation of a traveling plane wave with momentum k: the dynamics in Fourier space mainly involves two localized states with momenta +/-k (corresponding to a transmitted and a reflected wave). Within a two-mode ansatz in Fourier space, the dynamics of the system maps on a nonrigid pendulum Hamiltonian. The several analytically predicted (and numerically confirmed) regimes include states with a vanishing time average of the rotational states (implying complete reflections and refocusing of the incident wave), oscillations around fixed points (corresponding to quasi-stationary states), and, above a critical value of the nonlinearity, self-trapped states (with the wave traveling almost undisturbed through the impurity). We generalize this treatment to the case of several traveling waves and time-dependent defects. The validity of the two-mode ansatz and the continuum limit of the DNLS are discussed.
引用
收藏
页码:11 / 166071
页数:11
相关论文
共 27 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   Macroscopic quantum interference from atomic tunnel arrays [J].
Anderson, BP ;
Kasevich, MA .
SCIENCE, 1998, 282 (5394) :1686-1689
[3]   Josephson junction arrays with Bose-Einstein condensates [J].
Cataliotti, FS ;
Burger, S ;
Fort, C ;
Maddaloni, P ;
Minardi, F ;
Trombettoni, A ;
Smerzi, A ;
Inguscio, M .
SCIENCE, 2001, 293 (5531) :843-846
[4]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[5]   Discrete spatial optical solitons in waveguide arrays [J].
Eisenberg, HS ;
Silberberg, Y ;
Morandotti, R ;
Boyd, AR ;
Aitchison, JS .
PHYSICAL REVIEW LETTERS, 1998, 81 (16) :3383-3386
[6]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[7]  
Graham R. L., 1989, Concrete Mathematics. A Foundation for Computer Science
[8]   Wave transmission in nonlinear lattices [J].
Hennig, D ;
Tsironis, GP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1999, 307 (5-6) :333-432
[9]   SELF-TRAPPING ON A DIMER - TIME-DEPENDENT SOLUTIONS OF A DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
KENKRE, VM ;
CAMPBELL, DK .
PHYSICAL REVIEW B, 1986, 34 (07) :4959-4961
[10]   MODULATIONAL INSTABILITIES IN DISCRETE LATTICES [J].
KIVSHAR, YS ;
PEYRARD, M .
PHYSICAL REVIEW A, 1992, 46 (06) :3198-3205