Axonal Velocity Distributions in Neural Field Equations

被引:44
作者
Bojak, Ingo [1 ]
Liley, David T. J. [2 ]
机构
[1] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Ctr Neurosci, Med Ctr, NL-6525 ED Nijmegen, Netherlands
[2] Swinburne Univ Technol, BSI, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
VISUAL CALLOSAL AXONS; CONDUCTION-VELOCITY; PATTERN-FORMATION; ELECTRICAL-ACTIVITY; EPILEPTIC SEIZURES; PHASE-TRANSITION; CORPUS-CALLOSUM; RHESUS-MONKEY; NERVE-FIBERS; MODEL;
D O I
10.1371/journal.pcbi.1000653
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
By modelling the average activity of large neuronal populations, continuum mean field models (MFMs) have become an increasingly important theoretical tool for understanding the emergent activity of cortical tissue. In order to be computationally tractable, long-range propagation of activity in MFMs is often approximated with partial differential equations (PDEs). However, PDE approximations in current use correspond to underlying axonal velocity distributions incompatible with experimental measurements. In order to rectify this deficiency, we here introduce novel propagation PDEs that give rise to smooth unimodal distributions of axonal conduction velocities. We also argue that velocities estimated from fibre diameters in slice and from latency measurements, respectively, relate quite differently to such distributions, a significant point for any phenomenological description. Our PDEs are then successfully fit to fibre diameter data from human corpus callosum and rat subcortical white matter. This allows for the first time to simulate long-range conduction in the mammalian brain with realistic, convenient PDEs. Furthermore, the obtained results suggest that the propagation of activity in rat and human differs significantly beyond mere scaling. The dynamical consequences of our new formulation are investigated in the context of a well known neural field model. On the basis of Turing instability analyses, we conclude that pattern formation is more easily initiated using our more realistic propagator. By increasing characteristic conduction velocities, a smooth transition can occur from self-sustaining bulk oscillations to travelling waves of various wavelengths, which may influence axonal growth during development. Our analytic results are also corroborated numerically using simulations on a large spatial grid. Thus we provide here a comprehensive analysis of empirically constrained activity propagation in the context of MFMs, which will allow more realistic studies of mammalian brain activity in the future.
引用
收藏
页数:25
相关论文
共 66 条
[1]   FIBER COMPOSITION OF THE HUMAN CORPUS-CALLOSUM [J].
ABOITIZ, F ;
SCHEIBEL, AB ;
FISHER, RS ;
ZAIDEL, E .
BRAIN RESEARCH, 1992, 598 (1-2) :143-153
[2]  
[Anonymous], 2003, MATH BIOL
[3]  
[Anonymous], 1994, Chemical waves and patterns
[4]  
[Anonymous], KYBERNETIK, DOI DOI 10.1007/BF00270757
[5]   Self-organized 40 Hz synchronization in a physiological theory of EEG [J].
Bojak, I. ;
Liley, D. T. J. .
NEUROCOMPUTING, 2007, 70 (10-12) :2085-2090
[6]   Modeling the effects of anesthesia on the electroencephalogram [J].
Bojak, I ;
Liley, DTJ .
PHYSICAL REVIEW E, 2005, 71 (04)
[7]   SCALING FACTOR RELATING CONDUCTION-VELOCITY AND DIAMETER FOR MYELINATED AFFERENT NERVE-FIBERS IN THE CAT HIND-LIMB [J].
BOYD, IA ;
KALU, KU .
JOURNAL OF PHYSIOLOGY-LONDON, 1979, 289 (APR) :277-+
[8]   Neural pattern formation in networks with dendritic structure [J].
Bressloff, PC ;
De Souza, B .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 115 (1-2) :124-144
[9]   Modeling electrocortical activity through improved local approximations of integral neural field equations [J].
Coombes, S. ;
Venkov, N. A. ;
Shiau, L. ;
Bojak, I. ;
Liley, D. T. J. ;
Laing, C. R. .
PHYSICAL REVIEW E, 2007, 76 (05)
[10]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112