Data Descriptor: Machine-learned and codified synthesis parameters of oxide materials

被引:140
作者
Kim, Edward [1 ]
Huang, Kevin [1 ]
Tomala, Alex [1 ]
Matthews, Sara [1 ]
Strubell, Emma [2 ]
Saunders, Adam [2 ]
McCallum, Andrew [2 ]
Olivetti, Elsa [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Massachusetts, Amherst, MA 01003 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
COMBINATORIAL;
D O I
10.1038/sdata.2017.127
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predictive materials design has rapidly accelerated in recent years with the advent of large-scale resources, such as materials structure and property databases generated by ab initio computations. In the absence of analogous ab initio frameworks for materials synthesis, high-throughput and machine learning techniques have recently been harnessed to generate synthesis strategies for select materials of interest. Still, a community-accessible, autonomously-compiled synthesis planning resource which spans across materials systems has not yet been developed. In this work, we present a collection of aggregated synthesis parameters computed using the text contained within over 640,000 journal articles using state-of-the-art natural language processing and machine learning techniques. We provide a dataset of synthesis parameters, compiled autonomously across 30 different oxide systems, in a format optimized for planning novel syntheses of materials. [GRAPHICS] .
引用
收藏
页数:9
相关论文
共 33 条
[1]  
Abadi, 2015, Large-Scale Machine Learning on Heterogeneous Systems
[2]  
[Anonymous], 2017, ALPHACHEM CHEM SYNTH
[3]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[4]   The incidence and role of negative citations in science [J].
Catalini, Christian ;
Lacetera, Nicola ;
Oettl, Alexander .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (45) :13823-13826
[5]  
Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
[6]   The Materials Genome Initiative, the interplay of experiment, theory and computation [J].
de Pablo, Juan J. ;
Jones, Barbara ;
Lind, Cora ;
Ozolins, Vidvuds ;
Ramirez, Arthur P. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2014, 18 (02) :99-117
[7]  
Duvenaud D.K., 2015, Advances in neural information processing Systems (NIPS), P2224, DOI DOI 10.48550/ARXIV.1509.09292
[8]   Performance and resource considerations of Li-ion battery electrode materials [J].
Ghadbeigi, Leila ;
Harada, Jaye K. ;
Lettiere, Bethany R. ;
Sparks, Taylor D. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (06) :1640-1650
[9]   Reaxys [J].
Goodman, Jonathan .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (12) :2897-2898
[10]   Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials [J].
Green, Martin L. ;
Takeuchi, Ichiro ;
Hattrick-Simpers, Jason R. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (23)