A fractional diffusion equation to describe Levy flights

被引:263
作者
Chaves, AS
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Biol, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil
[2] Univ Brasilia, Dept Fis, BR-70910900 Brasilia, DF, Brazil
关键词
D O I
10.1016/S0375-9601(97)00947-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fractional-derivatives diffusion equation is proposed that generates the Levy statistics. The fractional derivatives are defined by the eigenvector equation partial derivative(x)(alpha)e(ax) = a(alpha)e(ax) and for one dimension the diffusion equation in an isotropic medium reads partial derivative(t)n = (D/2)(partial derivative(x)(alpha) + partial derivative(-x)(alpha))n + upsilon partial derivative(x)n, 1 < alpha less than or equal to 2. The equation is based on a proposed generalization of Fick's law which reads j = -(D/2)(del(r)(alpha-1) - del(-r)(alpha-1))n + nu n. The diffusion equation is also written for an anisotropic medium, and in this case it generates an asymmetric Levy statistics. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:13 / 16
页数:4
相关论文
共 24 条
  • [1] Dynamical approach to Levy processes
    Allegrini, P
    Grigolini, P
    West, BJ
    [J]. PHYSICAL REVIEW E, 1996, 54 (05) : 4760 - 4767
  • [2] SUBRECOIL LASER COOLING AND LEVY FLIGHTS
    BARDOU, F
    BOUCHAUD, JP
    EMILE, O
    ASPECT, A
    COHENTANNOUDJI, C
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (02) : 203 - 206
  • [3] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [4] Stochastic foundations of fractional dynamics
    Compte, A
    [J]. PHYSICAL REVIEW E, 1996, 53 (04): : 4191 - 4193
  • [5] Gelfand I. M., 1994, GEN FUNCTIONS, V1
  • [6] LEVY STATISTICS IN A HAMILTONIAN SYSTEM
    KLAFTER, J
    ZUMOFEN, G
    [J]. PHYSICAL REVIEW E, 1994, 49 (06): : 4873 - 4877
  • [7] NON-BROWNIAN TRANSPORT IN COMPLEX-SYSTEMS
    KLAFTER, J
    ZUMOFEN, G
    BLUMEN, A
    [J]. CHEMICAL PHYSICS, 1993, 177 (03) : 821 - 829
  • [8] LEVY P. P, 1937, Theorie de L'Addition des Variables Aleatoires
  • [9] Mandelbrot B. B., 1968, SIAM REV, V10, P423, DOI 10. 1137/1010093
  • [10] Mandelbrot BB., 1983, New York, V1st