Partially linear models and least squares support vector machines

被引:8
作者
Espinoza, M [1 ]
Suykens, JAK [1 ]
De Moor, B [1 ]
机构
[1] Katholieke Univ Leuven, ESAT SCD SISTA, B-3001 Louvain, Belgium
来源
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5 | 2004年
关键词
D O I
10.1109/CDC.2004.1429230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Within the context of nonlinear system identification, the LS-SVM formulation is extended to define a Partially Linear LS-SVM in order to identify a model containing a linear part and a nonlinear component. For a given kernel, a unique solution exists when the parametric part has full column rank, although identifiability problems can arise for certain structures. The solution has close links with traditional semiparametric techniques from the statistical literature. The properties of the model are illustrated by Monte Carlo simulations over different structures, and iterative forecasting examples for Hammerstein and other systems show a good global performance and an accurate identification of the linear part.
引用
收藏
页码:3388 / 3393
页数:6
相关论文
共 21 条
[1]  
[Anonymous], 2002, Least Squares Support Vector Machines
[2]  
[Anonymous], 1998, Encyclopedia of Biostatistics
[3]  
Cristianini N., 2000, Intelligent Data Analysis: An Introduction, DOI 10.1017/CBO9780511801389
[4]   SEMIPARAMETRIC ESTIMATES OF THE RELATION BETWEEN WEATHER AND ELECTRICITY SALES [J].
ENGLE, RF ;
GRANGER, CWJ ;
RICE, J ;
WEISS, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (394) :310-320
[5]  
ENQVIST M, 2002, LITHISYR2462 LINK U
[6]  
GOETHALS I, 2004, 0440 ESATSISTA K U L
[7]  
Hamilton J. D., 1994, TIME SERIES ANAL
[8]  
Hardle W., 2000, Partially Linear Models, DOI 10.1007/978-3-642-57700-0
[9]  
HARDLE W, 1989, EC SOC MONOGRAPHS
[10]  
Horn R. A., 1986, Matrix analysis