Proton exchange membrane for DMFC and H2/air fuel cells:: Synthesis and characterization of partially fluorinated disulfonated poly(arylene ether benzonitrile) copolymers

被引:90
作者
Sankir, M.
Kim, Yu Seung
Pivovar, Bryan S.
McGrath, James E. [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA
[3] LANL, Los Alamos, NM 87545 USA
[4] TOBB Univ Econ & Technol, TR-06560 Ankara, Turkey
基金
美国国家科学基金会;
关键词
proton exchange membrane; direct methanol fuel cell; fluorination; poly(arylene ether sulfone); poly(arylene ether benzonitrile); disulfonated random copolymers;
D O I
10.1016/j.memsci.2007.04.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Partially fluorinated disulfonated poly(arylene ether benzonitrile) random or statistical copolymers were synthesized by direct nucleophilic substitution copolymerization reactions. The 2,6-dichlorobenzonitrile and 3,3'-disulfonated 4,4'-difluorodiphenyl sulfone (SDFDPS) and controlled amounts of 4,4'-biphenol and hexafluoroisopropylidene diphenol (hexafluorobisphenol A, 6F) were used to produce partially fluorinated disulfortated copolymers with various degrees of fluorination (0-100 mol% 6F). NMR analysis coupled with titration of sulfonated moieties confirmed both chemical structure and copolymer composition. The copolymers produced ductile films and intrinsic viscosity analyses indicated high molecular weight copolymers were obtained. Several basic PEM parameters such as water uptake, proton conductivity and methanol permeabilities were controlled and presented as tunable properties which were a function of molecular structure. This was achieved by controlling of the chemical composition. Water uptake of membranes and cell resistance of MEAs were lowered by partial fluorination. The influence of this on desirably improving the interface in direct methanol fuel cell (DMFC)s was demonstrated. A delamination failure mechanism was proposed for the hydrocarbon membrane electrode assemblies (MEA) due to the large difference between water uptake of the catalyst layer and membrane and this was verified by a reduction in high frequency resistance (HFR) and enhanced durability for the partially fluorinated systems. A new term defined as water uptake corrected relative selectivity was introduced which better correlated with DMFC performance. Expression of the ion exchange capacity (IEC) on a volume basis was described and is suggested as an improvement relative to the usual weight basis analysis. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 18
页数:11
相关论文
共 19 条
[1]   Development of polymer electrolyte membrane fuel cell stack [J].
Dhathathreyan, KS ;
Sridhar, P ;
Sasikumar, G ;
Ghosh, KK ;
Velayutham, G ;
Rajalakshmi, N ;
Subramaniam, CK ;
Raja, M ;
Ramya, K .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1999, 24 (11) :1107-1115
[2]   Alternative polymer systems for proton exchange membranes (PEMs) [J].
Hickner, MA ;
Ghassemi, H ;
Kim, YS ;
Einsla, BR ;
McGrath, JE .
CHEMICAL REVIEWS, 2004, 104 (10) :4587-4611
[3]  
HICKNER MA, 2003, THESIS VPI
[4]   Direct methanol fuel cell performance of disulfonated poly-arylene ether benzonitrile) copolymers [J].
Kim, YS ;
Sumner, MJ ;
Harrison, WL ;
Riffle, JS ;
McGrath, JE ;
Pivovar, BS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (12) :A2150-A2156
[5]   Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton-exchange membranes for fuel-cell use above 100 °C [J].
Kim, YS ;
Wang, F ;
Hickner, M ;
McCartney, S ;
Hong, YT ;
Harrison, W ;
Zawodzinski, TA ;
McGrath, JE .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (22) :2816-2828
[6]   State of water in disulfonated poly(arylene ether sulfone) copolymers and a perfluorosulfonic acid copolymer (nafion) and its effect on physical and electrochemical properties [J].
Kim, YS ;
Dong, LM ;
Hickner, MA ;
Glass, TE ;
Webb, V ;
McGrath, JE .
MACROMOLECULES, 2003, 36 (17) :6281-6285
[7]   Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability [J].
Kim, YS ;
Hickner, MA ;
Dong, LM ;
Pivovar, BS ;
McGrath, JE .
JOURNAL OF MEMBRANE SCIENCE, 2004, 243 (1-2) :317-326
[8]  
Kordesch K., 1996, FUEL CELLS THEIR APP
[9]   Review and analysis of PEM fuel cell design and manufacturing [J].
Mehta, V ;
Cooper, JS .
JOURNAL OF POWER SOURCES, 2003, 114 (01) :32-53
[10]   Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance [J].
Passalacqua, E ;
Lufrano, F ;
Squadrito, G ;
Patti, A ;
Giorgi, L .
ELECTROCHIMICA ACTA, 2001, 46 (06) :799-805