The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2

被引:198
作者
Lamont, EW [1 ]
Robinson, B [1 ]
Stewart, J [1 ]
Amir, S [1 ]
机构
[1] Concordia Univ, Ctr Studies Behav Neurobiol, Dept Psychol, Montreal, PQ H4B 1R6, Canada
关键词
hippocampus; suprachiasmatic nucleus; oval nucleus; circadian clock;
D O I
10.1073/pnas.0500901102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is considerable evidence that circadian rhythms in mammals can be modulated by emotional state, but how emotional state modulates specific circadian outputs is poorly understood. We analyzed the expression of the circadian clock protein Period2 (PER2) in three regions of the limbic forebrain known to play key roles in emotional regulation, the central nucleus of the amygdala (CEA), the basolateral amygdala (BLA), and the dentate gyrus (DG). We report here that cells in all three regions exhibit daily rhythms in expression of PER2 that are under the control of the master clock, the suprachiasmatic nucleus (SCN). The rhythm in the CEA and the rhythms in the BLA and DG are diametrically opposite in phase and are differentially affected by adrenalectomy. Adrenalectomy completely abolished the PER2 rhythm in the CEA but had no effect on the PER2 rhythms in the BLA and DG. We previously reported a rhythm in PER2 expression in the oval nucleus of the bed nucleus of the stria terminalis that is identical in phase and sensitivity to adrenalectomy to that found in the CEA. Together, these findings show that key structures of the limbic forebrain exhibit daily oscillations in clock gene expression that are controlled not only by input from the SCN but, importantly, by hormonal and neurochemical changes that normally accompany motivational and emotional states. Thus, cells within these areas are strategically positioned to integrate the inputs from the SCN and emotional states to modulate circadian rhythms downstream from the SCN clock.
引用
收藏
页码:4180 / 4184
页数:5
相关论文
共 68 条
[1]   Modulation of hippocampal long-term potentiation by the amygdala: A synaptic mechanism linking emotion and memory [J].
Abe, K .
JAPANESE JOURNAL OF PHARMACOLOGY, 2001, 86 (01) :18-22
[2]   Circadian rhythms in isolated brain regions [J].
Abe, M ;
Herzog, ED ;
Yamazaki, S ;
Straume, M ;
Tei, H ;
Sakaki, Y ;
Menaker, M ;
Block, GD .
JOURNAL OF NEUROSCIENCE, 2002, 22 (01) :350-356
[3]   GLUCOCORTICOID REGULATION OF PREPROENKEPHALIN GENE-EXPRESSION IN THE RAT FOREBRAIN [J].
AHIMA, RS ;
GARCIA, MM ;
HARLAN, RE .
MOLECULAR BRAIN RESEARCH, 1992, 16 (1-2) :119-127
[4]  
Akirav I, 2002, J NEUROSCI, V22, P9912
[5]   A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis [J].
Amir, S ;
Lamont, EW ;
Robinson, B ;
Stewart, J .
JOURNAL OF NEUROSCIENCE, 2004, 24 (04) :781-790
[6]   Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock [J].
Bae, K ;
Jin, XW ;
Maywood, ES ;
Hastings, MH ;
Reppert, SM ;
Weaver, DR .
NEURON, 2001, 30 (02) :525-536
[7]   Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts [J].
Balsalobre, A ;
Marcacci, L ;
Schibler, U .
CURRENT BIOLOGY, 2000, 10 (20) :1291-1294
[8]   Resetting of circadian time peripheral tissues by glucocorticoid signaling [J].
Balsalobre, A ;
Brown, SA ;
Marcacci, L ;
Tronche, F ;
Kellendonk, C ;
Reichardt, HM ;
Schütz, G ;
Schibler, U .
SCIENCE, 2000, 289 (5488) :2344-2347
[9]   Molecular clock genes in man and lower animals: Possible implications for circadian abnormalities in depression [J].
Bunney, WE ;
Bunney, BG .
NEUROPSYCHOPHARMACOLOGY, 2000, 22 (04) :335-345
[10]   Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex [J].
Cardinal, RN ;
Parkinson, JA ;
Hall, J ;
Everitt, BJ .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2002, 26 (03) :321-352