Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells

被引:111
作者
Das, Prodip K. [1 ,2 ]
Li, Xianguo [1 ]
Liu, Zhong-Sheng [2 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3G1, Canada
[2] CNR, Inst Fuel Cell Innovat, Vancouver, BC V6T 1W5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Analytical formulation; Cathode catalyst layer; Liquid water transport; PEM fuel cell; Water flooding; GAS-DIFFUSION LAYER; FLOW-FIELD; HEAT-TRANSFER; POROUS-MEDIA; 2-PHASE FLOW; MANAGEMENT; PERFORMANCE; MODEL;
D O I
10.1016/j.ijhydene.2009.12.160
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of a polymer electrolyte membrane (PEM) fuel cell is significantly affected by liquid water generated at the cathode catalyst layer (CCL) potentially causing water flooding of cathode; while the ionic conductivity of PEM is directly proportional to its water content. Therefore, it is essential to maintain a delicate water balance, which requires a good understanding of the liquid water transport in the PEM fuel cells. In this study, a one-dimensional analytical solution of liquid water transport across the CCL is derived from the fundamental transport equations to investigate the water transport in the CCL of a PEM fuel cell. The effect of CCL wettability on liquid water transport and the effect of excessive liquid water, which is also known as "flooding", on reactant transport and cell performance have also been investigated. It has been observed that the wetting characteristic of a CCL plays significant role on the liquid water transport and cell performance. Further, the liquid water saturation in a hydrophilic CCL can be significantly reduced by increasing the surface wettability or lowering the contact angle. Based on a dimensionless time constant analysis, it has been shown that the liquid water production from the phase change process is negligible compared to the production from the electrochemical process. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved,
引用
收藏
页码:2403 / 2416
页数:14
相关论文
共 39 条
[1]  
[Anonymous], 1960, Transport Phenomena
[2]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[3]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[4]  
Birger J, 2005, FORTUNE, V152, P34
[5]  
DAS PK, APPL ENERGY IN PRESS
[6]  
DAS PK, 2008, P 4 INT GREEN EN C, P164
[7]   A three-dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells [J].
Das, Prodip K. ;
Li, Xianguo ;
Liu, Zhong-Sheng .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :186-199
[8]   Analytical approach to polymer electrolyte membrane fuel cell performance and optimization [J].
Das, Prodip K. ;
Li, Xianguo ;
Liu, Zhong-Sheng .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2007, 604 (02) :72-90
[9]   In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy [J].
Feindel, KW ;
LaRocque, LPA ;
Starke, D ;
Bergens, SH ;
Wasylishen, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (37) :11436-11437
[10]   WATER AND THERMAL MANAGEMENT IN SOLID-POLYMER-ELECTROLYTE FUEL-CELLS [J].
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (05) :1218-1225