On nodal sets for Dirac and Laplace operators

被引:48
作者
Bar, C
机构
[1] Mathematisches Institut, Universität Freiburg, D-79104 Freiburg
关键词
D O I
10.1007/s002200050184
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the nodal set (zero set) of a solution of a generalized Dirac equation on a Riemannian manifold has codimension 2 at least. If the underlying manifold is a surface, then the nodal set is discrete, We obtain a quick proof of the fact that the nodal set of an eigenfunction for the Laplace-Beltrami operator on a Riemannian manifold consists of a smooth hypersurface and a singular set of lower dimension. We also see that the nodal set of a Delta-harmonic differential form on a closed manifold has codimension 2 at least; a fact which is not true if the manifold is not closed. Examples show that all bounds are optimal.
引用
收藏
页码:709 / 721
页数:13
相关论文
共 25 条
[1]  
ALBERT JH, 1973, P S PURE MATH, V23, P71
[2]  
Aronszajn N., 1957, J. Math. Pures Appl, V36, P235
[3]  
BERARD P, 1982, ANN SCI ECOLE NORM S, V15, P513
[4]  
Berline N, 1992, HEAT KERNELS DIRAC O
[5]  
BRIESKORN E., 1986, Plane algebraic curves
[6]  
Brocker T., 1975, DIFFERENTIABLE GERMS, DOI 10.1017/cbo9781107325418
[7]   NODES OF EIGEN-FUNCTIONS OF LAPLACE-BELTRAMI OPERATOR [J].
BRUNING, J .
MATHEMATISCHE ZEITSCHRIFT, 1978, 158 (01) :15-21
[8]   PARTIAL REGULARITY OF THE ZERO-SET OF SOLUTIONS OF LINEAR AND SUPERLINEAR ELLIPTIC-EQUATIONS [J].
CAFFARELLI, LA ;
FRIEDMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 60 (03) :420-433
[9]  
Carleman T, 1933, CR HEBD ACAD SCI, V197, P471
[10]  
CHANILLO S, 1991, J DIFFER GEOM, V34, P85