Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides

被引:150
作者
Pellock, BJ [1 ]
Cheng, HP [1 ]
Walker, GC [1 ]
机构
[1] MIT, Dept Biol, Cambridge, MA 02139 USA
关键词
D O I
10.1128/JB.182.15.4310-4318.2000
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The soil bacterium Sinorhizobium meliloti is capable of entering into a nitrogen-fixing symbiosis with Medicago sativa (alfalfa). particular low-molecular-weight forms of certain polysaccharides produced by S. meliloti are crucial for establishing this symbiosis. Alfalfa nodule invasion by S. meliloti can be mediated by any one of three symbiotically important polysaccharides: succinoglycan, EPS II, or K antigen (also referred to as KPS). Using green fluorescent protein-labeled S. meliloti cells, we have shown that there are significant differences in the details and efficiencies of nodule invasion mediated by these polysaccharides. Succinoglycan is highly efficient in mediating both infection thread initiation and extension. However, EPS II is significantly less efficient than succinoglycan at mediating both invasion steps, and K antigen is significantly less efficient than succinoglycan at mediating infection thread extension. In the case of EPS II-mediated symbioses, the reduction in invasion efficiency results in stunted host plant growth relative to plants inoculated with succinoglycan or K-antigen-producing strains. Additionally, EPS II- and K-antigen-mediated infection threads are 8 to 10 times more likely to have aberrant morphologies than those mediated by succinoglycan. These data have important implications for understanding how S. meliloti polysaccharides are functioning in the plant-bacterium interaction, and models are discussed.
引用
收藏
页码:4310 / 4318
页数:9
相关论文
共 46 条
[1]   HOST-SYMBIONT INTERACTIONS .4. STRUCTURAL ELUCIDATION, USING HPLC-MS AND GLC-MS OF THE ACIDIC POLYSACCHARIDE SECRETED BY RHIZOBIUM-MELILOTI STRAIN-1021 [J].
AMAN, P ;
MCNEIL, M ;
FRANZEN, LE ;
DARVILL, AG ;
ALBERSHEIM, P .
CARBOHYDRATE RESEARCH, 1981, 95 (02) :263-282
[2]   THE STRUCTURE OF A NOVEL POLYSACCHARIDE PRODUCED BY BRADYRHIZOBIUM SPECIES WITHIN SOYBEAN NODULES [J].
AN, JH ;
CARLSON, RW ;
GLUSHKA, J ;
STREETER, JG .
CARBOHYDRATE RESEARCH, 1995, 269 (02) :303-317
[3]  
BANFALVI Z, 1981, MOL GEN GENET, V184, P318
[4]   SPECIFIC OLIGOSACCHARIDE FORM OF THE RHIZOBIUM-MELILOTI EXOPOLYSACCHARIDE PROMOTES NODULE INVASION IN ALFALFA [J].
BATTISTI, L ;
LARA, JC ;
LEIGH, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (12) :5625-5629
[5]   The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: Genetic organization and properties of the encoded gene products [J].
Becker, A ;
Ruberg, S ;
Kuster, H ;
Roxlau, AA ;
Keller, M ;
Ivashina, T ;
Cheng, HP ;
Walker, GC ;
Puhler, A .
JOURNAL OF BACTERIOLOGY, 1997, 179 (04) :1375-1384
[6]   A MUTATION THAT BLOCKS EXOPOLYSACCHARIDE SYNTHESIS PREVENTS NODULATION OF PEAS BY RHIZOBIUM-LEGUMINOSARUM BUT NOT OF BEANS BY R-PHASEOLI AND IS CORRECTED BY CLONED DNA FROM RHIZOBIUM OR THE PHYTOPATHOGEN XANTHOMONAS [J].
BORTHAKUR, D ;
BARBER, CE ;
LAMB, JW ;
DANIELS, MJ ;
DOWNIE, JA ;
JOHNSTON, AWB .
MOLECULAR & GENERAL GENETICS, 1986, 203 (02) :320-323
[7]   DEVELOPMENT OF THE LEGUME ROOT NODULE [J].
BREWIN, NJ .
ANNUAL REVIEW OF CELL BIOLOGY, 1991, 7 :191-226
[8]   Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti [J].
Cheng, HP ;
Walker, GC .
JOURNAL OF BACTERIOLOGY, 1998, 180 (19) :5183-5191
[9]   LIPO-OLIGOSACCHARIDE NODULATION FACTORS - A MINIREVIEW NEW CLASS OF SIGNALING MOLECULES MEDIATING RECOGNITION AND MORPHOGENESIS [J].
DENARIE, J ;
CULLIMORE, J .
CELL, 1993, 74 (06) :951-954
[10]   RHIZOBIUM-LEGUMINOSARUM EXOPOLYSACCHARIDE MUTANTS - BIOCHEMICAL AND GENETIC ANALYSES AND SYMBIOTIC BEHAVIOR ON 3 HOSTS [J].
DIEBOLD, R ;
NOEL, KD .
JOURNAL OF BACTERIOLOGY, 1989, 171 (09) :4821-4830