A marine microbial consortium apparently mediating anaerobic oxidation of methane

被引:2306
作者
Boetius, A [1 ]
Ravenschlag, K
Schubert, CJ
Rickert, D
Widdel, F
Gieseke, A
Amann, R
Jorgensen, BB
Witte, U
Pfannkuche, O
机构
[1] Max Planck Inst Marine Microbiol, D-28359 Bremen, Germany
[2] GEOMAR Res Ctr Marine Geosci, D-24148 Kiel, Germany
关键词
D O I
10.1038/35036572
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments(1). Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles(2), radiotracer experiments(3) and stable carbon isotope data(4). But the elusive microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria(5-7). Here we provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100 cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane.
引用
收藏
页码:623 / 626
页数:4
相关论文
共 29 条
[1]   Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico [J].
Aharon, P ;
Fu, BS .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2000, 64 (02) :233-246
[2]   CARBON AND HYDROGEN ISOTOPE FRACTIONATION RESULTING FROM ANAEROBIC METHANE OXIDATION [J].
Alperin, M. ;
Reeburgh, W. ;
Whiticar, M. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1988, 2 (03) :279-288
[3]   FLUORESCENT-OLIGONUCLEOTIDE PROBING OF WHOLE CELLS FOR DETERMINATIVE, PHYLOGENETIC, AND ENVIRONMENTAL-STUDIES IN MICROBIOLOGY [J].
AMANN, RI ;
KRUMHOLZ, L ;
STAHL, DA .
JOURNAL OF BACTERIOLOGY, 1990, 172 (02) :762-770
[4]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[5]  
[Anonymous], 1982, DYNAMIC ENV OCEAN FL
[6]  
BOHRMANN G, 2000, GEOMAR REP, V93
[7]   DIFFUSION OF THE INTERSPECIES ELECTRON CARRIERS H-2 AND FORMATE IN METHANOGENIC ECOSYSTEMS AND ITS IMPLICATIONS IN THE MEASUREMENT OF KM FOR H-2 OR FORMATE UPTAKE [J].
BOONE, DR ;
JOHNSON, RL ;
LIU, Y .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (07) :1735-1741
[8]   GENUS-SPECIFIC AND GROUP-SPECIFIC HYBRIDIZATION PROBES FOR DETERMINATIVE AND ENVIRONMENTAL-STUDIES OF SULFATE-REDUCING BACTERIA [J].
DEVEREUX, R ;
KANE, MD ;
WINFREY, J ;
STAHL, DA .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1992, 15 (04) :601-609
[9]   Anaerobic methane oxidation associated with marine gas hydrates:: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids [J].
Elvert, M ;
Suess, E ;
Whiticar, MJ .
NATURWISSENSCHAFTEN, 1999, 86 (06) :295-300
[10]  
FOSSING H, 1989, BIOGEOCHEMISTRY, V8, P205