Foundations of nonlinear gyrokinetic theory

被引:808
作者
Brizard, A. J. [1 ]
Hahm, T. S.
机构
[1] St Michaels Coll, Dept Chem & Phys, Colchester, VT 05439 USA
[2] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1103/RevModPhys.79.421
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear gyrokinetic equations play a fundamental role in our understanding of the long-time behavior of strongly magnetized plasmas. The foundations of modern nonlinear gyrokinetic theory are based on three pillars: (i) a gyrokinetic Vlasov equation written in terms of a gyrocenter Hamiltonian with quadratic low-frequency ponderomotivelike terms, (ii) a set of gyrokinetic Maxwell (Poisson-Ampere) equations written in terms of the gyrocenter Vlasov distribution that contain low-frequency polarization (Poisson) and magnetization (Ampere) terms, and (iii) an exact energy conservation law for the gyrokinetic Vlasov-Maxwell equations that includes all the relevant linear and nonlinear coupling terms. The foundations of nonlinear gyrokinetic theory are reviewed with an emphasis on rigorous application of Lagrangian and Hamiltonian Lie-transform perturbation methods in the variational derivation of nonlinear gyrokinetic Vlasov-Maxwell equations. The physical motivations and applications of the nonlinear gyrokinetic equations that describe the turbulent evolution of low-frequency electromagnetic fluctuations in a nonuniform magnetized plasmas with arbitrary magnetic geometry are discussed.
引用
收藏
页码:421 / 468
页数:48
相关论文
共 261 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]   Effects of plasma current on nonlinear interactions of ITG turbulence, zonal flows and geodesic acoustic modes [J].
Angelino, P. ;
Bottino, A. ;
Hatzky, R. ;
Jolliet, S. ;
Sauter, O. ;
Tran, T. M. ;
Villard, L. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (05) :557-571
[3]  
[Anonymous], 1995, THESIS PRINCETON U
[4]  
[Anonymous], THESIS PRINCETON U
[5]   KINETIC-EQUATIONS FOR LOW-FREQUENCY INSTABILITIES IN INHOMOGENEOUS PLASMAS [J].
ANTONSEN, TM ;
LANE, B .
PHYSICS OF FLUIDS, 1980, 23 (06) :1205-1214
[6]  
Arnold VI, 2013, Mathematical methods of classical mechanics
[7]   NONLINEAR ELECTROMAGNETIC GYROKINETIC EQUATIONS FOR ROTATING AXISYMMETRICAL PLASMAS [J].
ARTUN, M ;
TANG, WM .
PHYSICS OF PLASMAS, 1994, 1 (08) :2682-2692
[8]  
Beer M. A., 1995, Gyrofluid models of turbulent transport in tokamaks
[9]   Poloidal rotation in TFTR reversed shear plasmas [J].
Bell, RE ;
Levinton, FM ;
Batha, SH ;
Synakowski, EJ ;
Zarnstorff, MC .
PHYSICAL REVIEW LETTERS, 1998, 81 (07) :1429-1432
[10]   GENERALIZED GYROKINETICS [J].
BERNSTEIN, IB ;
CATTO, PJ .
PHYSICS OF FLUIDS, 1985, 28 (05) :1342-1353