A parallelized integral-direct second-order Moller-Plesset perturbation theory method with a fragment molecular orbital scheme

被引:160
作者
Mochizuki, Y
Nakano, T
Koikegami, S
Tanimori, S
Abe, Y
Nagashima, U
Kitaura, K
机构
[1] Univ Tokyo, Ctr Collaborat Res, Inst Ind Sci, Meguro Ku, Tokyo 1538904, Japan
[2] Natl Inst Hlth Sci, Div Safety Informat Drug Food & Chem, Setagaya Ku, Tokyo 1588501, Japan
[3] Natl Inst Adv Ind Sci & Technol, Grid Technol Res Ctr, Taito Ku, Tokyo 1100015, Japan
[4] Natl Inst Adv Ind Sci & Technol, Res Inst Computat Sci, Tsukuba, Ibaraki 3058568, Japan
关键词
fragment molecular orbital; second-order Moller-Plesset perturbation theory; parallelism; integral transformation; density matrix;
D O I
10.1007/s00214-004-0602-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a parallelized integral-direct algorithm of the second-order Moller-Plesset perturbation theory (MP2) as a size-consistent correlated method. The algorithm is a modification of the recipe by Mochizuki et al. [(1996) Theor Chim Acta 93:211]. There is no need to communicate the bulky data of integrals across worker processes, keeping the formal fifth-power dependence on the number of basis functions. A multiple integral screening procedure is incorporated to reduce the operation costs effectively. An approximate MP2 density matrix can also be directly calculated through the integral contraction with orbital energies. We implement the MP2 code by accepting Kitaura's fragment molecular orbital (FMO) scheme as in the program ABINIT-MP developed by Nakano et al. [(2002) Chem Phys Lett 351:475]. The error in the FMO-MP2 energies is found to be within the order of the chemical accuracy. Timing and parallel acceleration results are shown for test molecules.
引用
收藏
页码:442 / 452
页数:11
相关论文
共 59 条
[1]   A derivation of the frozen-orbital unrestricted open-shell and restricted closed-shell second-order perturbation theory analytic gradient expressions [J].
Aikens, CM ;
Webb, SP ;
Bell, RL ;
Fletcher, GD ;
Schmidt, MW ;
Gordon, MS .
THEORETICAL CHEMISTRY ACCOUNTS, 2003, 110 (04) :233-253
[2]   PRINCIPLES FOR A DIRECT SCF APPROACH TO LCAO-MO ABINITIO CALCULATIONS [J].
ALMLOF, J ;
FAEGRI, K ;
KORSELL, K .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1982, 3 (03) :385-399
[3]  
[Anonymous], BASIC LINEAR ALGEBRA
[4]  
[Anonymous], The message passing interface MPI standard
[5]  
[Anonymous], 1994, A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
[6]   An efficient parallel algorithm for the calculation of canonical MP2 energies [J].
Baker, J ;
Pulay, P .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (12) :1150-1156
[7]   ORBITAL-INVARIANT 2ND-ORDER MANY-BODY PERTURBATION-THEORY ON PARALLEL COMPUTERS - AN APPROACH FOR LARGE MOLECULES [J].
BERNHOLDT, DE ;
HARRISON, RJ .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (24) :9582-9589
[8]  
CREAMER D, 1988, ENCY COMPUTATIONAL C, P1706
[9]   Comment on "Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory treatment" [J. Chem. Phys. 114, 5149 (2001)] [J].
Cybulski, SM ;
Bledson, TM ;
Toczylowski, RR .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (24) :11039-11040
[10]  
DUPUIS M, 1994, NATO ADV SCI INST SE, V318, P315