Bone morphogenetic protein-2 enhances osterix gene expression in chondrocytes

被引:59
作者
Yagi, K
Tsuji, K
Nifuji, A
Shinomiya, K
Nakashima, K
deCrombrugghe, B
Noda, M
机构
[1] Tokyo Med & Dent Univ, Med Res Inst, Dept Mol Pharmacol, Chiyoda Ku, Tokyo 1010062, Japan
[2] Tokyo Med & Dent Univ, Dept Orthoped Surg, Tokyo, Japan
[3] Univ Texas, MD Anderson Canc Ctr, Dept Mol Genet, Houston, TX 77030 USA
关键词
chondrocytes; BMP; osterix; gene expression;
D O I
10.1002/jcb.10467
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Osterix is a recently identified zinc-finger-containing transcription factor, which is required for skeleto-genesis as no bone formation was observed in osterix-deficient mice. Osterix was first cloned as a gene whose expression was enhanced by BMP in C2C12 cells. As BMP induces ectopic bone formation in vivo via a pathway reminiscent to endochondral bone formation, BMP may also regulate osterix gene expression in chondrocytes. However, no information was available regarding the BMP actions on osterix gene expression in chondrocytes. We therefore examined the effects of BMP-2 on osterix gene expression in chondrocytes in culture. RT-PCR analysis indicated that osterix m RNA was expressed in the primary cultures of chondrocytes derived from mouse rib cartilage. The treatment with BMP-2 enhanced the levels of osterix transcripts within 24 h and the enhancement was still observed at 48 h based on RT-PCR analysis. This BMP effect was specific to this cytokine, as TGF-beta did not alter osterix gene expression. BMP effects on the osterix mRNA levels were also confirmed by Northern blot analysis. The enhancing effect of BMP on osterix gene expression was observed in a dose-dependent manner starting at 200 ng/ml. The BMP enhancement of the osterix gene expression in chondrocytes was blocked in the presence of a protein synthesis inhibitor, cycloheximide, while it was stil I observed in the presence of 5,6-dichloro-1-beta D-ribofuranosylbenzimidazol (DRB) suggesting the involvement of post-transcriptional events, which require new protein synthesis. These results indicated that osterix gene is expressed in the primary cultures of chondrocytes and its expression is under the control of BMP-2. (C) 2003 Wiley-Liss, Inc.
引用
收藏
页码:1077 / 1083
页数:7
相关论文
共 32 条
[1]  
Atkinson BL, 1997, J CELL BIOCHEM, V65, P325, DOI 10.1002/(SICI)1097-4644(19970601)65:3<325::AID-JCB3>3.3.CO
[2]  
2-G
[3]  
CANALIS E, 1994, J BONE MINER RES, V9, P1999
[4]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[5]   Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures [J].
Denker, AE ;
Haas, AR ;
Nicoll, SB ;
Tuan, RS .
DIFFERENTIATION, 1999, 64 (02) :67-76
[6]   Bone morphogenetic protein signaling is required for maintenance of differentiated phenotype, control of proliferation, and hypertrophy in chondrocytes [J].
Enomoto-Iwamoto, M ;
Iwamoto, M ;
Mukudai, Y ;
Kawakami, Y ;
Nohno, T ;
Higuchi, Y ;
Takemoto, S ;
Ohuchi, H ;
Noji, S ;
Kurisu, K .
JOURNAL OF CELL BIOLOGY, 1998, 140 (02) :409-418
[7]  
Inada M, 1999, DEV DYNAM, V214, P279, DOI 10.1002/(SICI)1097-0177(199904)214:4<279::AID-AJA1>3.0.CO
[8]  
2-W
[9]   In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells [J].
Johnstone, B ;
Hering, TM ;
Caplan, AI ;
Goldberg, VM ;
Yoo, JU .
EXPERIMENTAL CELL RESEARCH, 1998, 238 (01) :265-272
[10]  
Kameda T, 2000, DEV GROWTH DIFFER, V42, P229