Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis

被引:43
作者
Boels, IC
Kleerebezem, M
de Vos, WM
机构
[1] NIZO, Food Res, NL-6710 BA Ede, Netherlands
[2] Wageningen Ctr Food Sci, Wageningen, Netherlands
关键词
D O I
10.1128/AEM.69.2.1129-1135.2003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We describe the effects of modulating the activities of glucokinase, phosphofructokinase, and phosphoglucomutase on the branching point between sugar degradation and the biosynthesis of sugar nucleotides involved in the production of exopolysaccharide biosynthesis by Lactococcus lactis. This was realized by using a described isogenic L. lactis mutant with reduced enzyme activities or by controlled expression of the well-characterized genes for phosphoglucomutase or glucokinase from Escherichia coli or Bacillus subtilis, respectively. The role of decreased metabolic flux was studied in L. lactis strains with decreased phosphofructokinase activities. The concomitant reduction of the activities of phosphofructokinase and other enzymes encoded by the las operon (lactate dehydrogenase and pyruvate kinase) resulted in significant changes in the concentrations of sugar-phosphates. In contrast, a >25-fold overproduction of glucokinase resulted in 7-fold-increased fructose-6-phosphate levels and 2-fold-reduced glucose-1-phosphate and glucose-6-phosphate levels. However, these increased sugar-phosphate concentrations did not affect the levels of sugar nucleotides. Finally, an similar to100-fold overproduction of phosphoglucomutase resulted in 5-fold-increased levels of both UDP-glucose and UDPgalactose. While the increased concentrations of sugar-phosphates or sugar nucleotides did not significantly affect the production of exopolysaccharides, they demonstrate the metabolic flexibility of L. lactis.
引用
收藏
页码:1129 / 1135
页数:7
相关论文
共 42 条
[1]   Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux [J].
Andersen, HW ;
Solem, C ;
Hammer, K ;
Jensen, PR .
JOURNAL OF BACTERIOLOGY, 2001, 183 (11) :3458-3467
[2]   Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis [J].
Boels, IC ;
Ramos, A ;
Kleerebezem, M ;
De Vos, WM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) :3033-3040
[3]   Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria [J].
Boels, IC ;
van Kranenburg, R ;
Hugenholtz, J ;
Kleerebezem, M ;
de Vos, WM .
INTERNATIONAL DAIRY JOURNAL, 2001, 11 (09) :723-732
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]  
Bron S., 1990, Molecular biological methods for Bacillus, P75
[6]   ANALYSIS OF GENE-CONTROL SIGNALS BY DNA-FUSION AND CLONING IN ESCHERICHIA-COLI [J].
CASADABAN, MJ ;
COHEN, SN .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 138 (02) :179-207
[7]   THE PSEUDOMONAS-AERUGINOSA ALGC GENE ENCODES PHOSPHOGLUCOMUTASE, REQUIRED FOR THE SYNTHESIS OF A COMPLETE LIPOPOLYSACCHARIDE CORE [J].
COYNE, MJ ;
RUSSELL, KS ;
COYLE, CL ;
GOLDBERG, JB .
JOURNAL OF BACTERIOLOGY, 1994, 176 (12) :3500-3507
[8]   PROPERTIES OF A STREPTOCOCCUS-LACTIS STRAIN THAT FERMENTS LACTOSE SLOWLY [J].
CROW, VL ;
THOMAS, TD .
JOURNAL OF BACTERIOLOGY, 1984, 157 (01) :28-34
[9]   Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03 [J].
Degeest, B ;
De Vuyst, L .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3519-3527
[10]   Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis [J].
deRuyter, PGGA ;
Kuipers, OP ;
Beerthuyzen, MM ;
vanAlenBoerrigter, I ;
deVos, WM .
JOURNAL OF BACTERIOLOGY, 1996, 178 (12) :3434-3439