Mechanisms for oxidative stress in diabetic cardiovascular disease

被引:129
作者
Pennathur, Subramaniam [1 ]
Heinecke, Jay W.
机构
[1] Univ Michigan, Dept Med, Ann Arbor, MI 48109 USA
[2] Univ Washington, Dept Med, Seattle, WA 98195 USA
关键词
D O I
10.1089/ars.2007.1595
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Obesity, metabolic syndrome, and diabetes are increasingly prevalent in Western society, and they markedly increase the risk for atherosclerotic vascular disease, the major cause of death in diabetics. Although recent evidence suggests a causal role for oxidative stress in insulin resistance, diabetes, and atherosclerosis, there is considerable controversy regarding its nature, magnitude, and underlying mechanisms. Glucose promotes glycoxidation reactions in vitro, and products of glycoxidation and lipoxidation are elevated in plasma and tissue from humans suffering from diabetes, but the exact relationships between hyperglycemia and oxidative stress are poorly understood. This review focuses on molecular mechanisms of increased oxidative stress in diabetes, the relationship of oxidant production to hyperglycemia, and the potential interaction of reactive carbonyls and lipids in oxidant generation. Using highly sensitive and specific gas chromatography-mass spectrometry, molecular signatures of specific oxidation pathways were identified in tissues of diabetic humans and animals. These studies support the hypothesis that unique reactive intermediates generated in localized microenvironments of vulnerable tissues promote diabetic damage. Therapies interrupting these reactive pathways in vascular tissue might help prevent cardiovascular disease in this high-risk population.
引用
收藏
页码:955 / 969
页数:15
相关论文
共 154 条
[1]   Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver [J].
Abel, ED ;
Peroni, O ;
Kim, JK ;
Kim, YB ;
Boss, O ;
Hadro, E ;
Minnemann, T ;
Shulman, GI ;
Kahn, BB .
NATURE, 2001, 409 (6821) :729-733
[2]   Nitric oxide is a physiological substrate for mammalian peroxidases [J].
Abu-Soud, HM ;
Hazen, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (48) :37524-37532
[3]  
*AM DIAB ASS, 2007, DIAB STAT
[4]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[5]  
[Anonymous], 2000, Lancet, V355, P253, DOI DOI 10.1016/S0140-6736(99)12323-7
[6]   Role of oxidative stress in diabetic complications - A new perspective on an old paradigm [J].
Baynes, JW ;
Thorpe, SR .
DIABETES, 1999, 48 (01) :1-9
[7]   Glycoxidation and lipoxidation in atherogenesis [J].
Baynes, JW ;
Thorpe, SR .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (12) :1708-1716
[8]  
BECKMAN JS, 1994, METHOD ENZYMOL, V233, P229
[9]   The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport [J].
Bergt, C ;
Pennathur, S ;
Fu, XY ;
Byun, J ;
O'Brien, K ;
McDonald, TO ;
Singh, P ;
Anantharamaiah, GM ;
Chait, A ;
Brunzell, J ;
Geary, RL ;
Oram, JF ;
Heinecke, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (35) :13032-13037
[10]   NADPH oxidase of neutrophils elevates o,o′-dityrosine cross-links in proteins and urine during inflammation [J].
Bhattacharjee, S ;
Pennathur, S ;
Byun, J ;
Crowley, J ;
Mueller, D ;
Gischler, J ;
Hotchkiss, RS ;
Heinecke, JW .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2001, 395 (01) :69-77