Kinetics of fibril formation by polyalanine peptides

被引:82
作者
Nguyen, HD [1 ]
Hall, CK [1 ]
机构
[1] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
关键词
D O I
10.1074/jbc.M407338200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ordered beta-sheet complexes, termed amyloid fibrils, are the underlying structural components of the intra- and extracellular fibrillar protein deposits that are associated with a variety of human diseases, including Alzheimer's, Parkinson's, and the prion diseases. In this work, we investigated the kinetics of fibril formation using our newly developed off-lattice intermediate resolution model, PRIME. The model is simple enough to allow the treatment of large multichain systems while maintaining a fairly realistic description of protein dynamics without built-in bias toward any conformation when used in conjunction with constant temperature discontinuous molecular dynamics, a fast alternative to conventional molecular dynamics. Simulations were performed on systems containing 48 - 96 model Ac-KA(14)K-NH2 peptides. We found that fibril formation for polyalanines incorporate features that are characteristic of three models, the templated assembly, nucleated polymerization, and nucleated conformational conversion models, but that none of them gave a completely satisfactory description of the simulation kinetics. Fibril formation was nucleation-dependent, occurring after a lag time that decreased with increasing peptide concentration and increased with increasing temperature. Fibril formation appeared to be a conformational conversion process in which small amorphous aggregates --> beta-sheets --> ordered nucleus --> subsequent rapid growth of a small stable fibril or protofilament. Fibril growth in our simulations involved both beta-sheet elongation, in which the fibril grew by adding individual peptides to the end of each beta-sheet, and lateral addition, in which the fibril grew by adding already formed beta-sheets to its side. The initial rate of fibril formation increased with increasing concentration and decreased with increasing temperature.
引用
收藏
页码:9074 / 9082
页数:9
相关论文
共 85 条
[1]   STUDIES IN MOLECULAR DYNAMICS .1. GENERAL METHOD [J].
ALDER, BJ ;
WAINWRIGHT, TE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02) :459-466
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]   Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils [J].
Antzutkin, ON ;
Balbach, JJ ;
Leapman, RD ;
Rizzo, NW ;
Reed, J ;
Tycko, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (24) :13045-13050
[4]   Supramolecular structure in full-length Alzheimer's β-amyloid fibrils:: Evidence for a parallel β-sheet organization from solid-state nuclear magnetic resonance [J].
Balbach, JJ ;
Petkova, AT ;
Oyler, NA ;
Antzutkin, ON ;
Gordon, DJ ;
Meredith, SC ;
Tycko, R .
BIOPHYSICAL JOURNAL, 2002, 83 (02) :1205-1216
[5]   FORMATION AND STRUCTURE OF GELS AND FIBRILS FROM GLUCAGON [J].
BEAVEN, GH ;
GRATZER, WB ;
DAVIES, HG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1969, 11 (01) :37-&
[6]  
BELLEMANS A, 1980, MOL PHYS, V39, P781, DOI 10.1080/00268978000100671
[7]   Propagating structure of Alzheimer's β-amyloid(10-35) is parallel β-sheet with residues in exact register [J].
Benzinger, TLS ;
Gregory, DM ;
Burkoth, TS ;
Miller-Auer, H ;
Lynn, DG ;
Botto, RE ;
Meredith, SC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13407-13412
[8]   Polyalanine-based peptides as models for self-associated beta-pleated-sheet complexes [J].
Blondelle, SE ;
Forood, B ;
Houghten, RA ;
PerezPaya, E .
BIOCHEMISTRY, 1997, 36 (27) :8393-8400
[9]   Oculopharyngeal muscular dystrophy [J].
Brais, B ;
Rouleau, GA ;
Bouchard, JP ;
Fardeau, M ;
Tomé, FMS .
SEMINARS IN NEUROLOGY, 1999, 19 (01) :59-66
[10]   Structure of the β-amyloid(10-35) fibril [J].
Burkoth, TS ;
Benzinger, TLS ;
Urban, V ;
Morgan, DM ;
Gregory, DM ;
Thiyagarajan, P ;
Botto, RE ;
Meredith, SC ;
Lynn, DG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (33) :7883-7889