Agonist-modulated targeting of the EDG-1 receptor to plasmalemmal caveolae - eNOS activation by sphingosine 1-phosphate and the role of caveolin-1 in sphingolipid signal transduction

被引:135
作者
Igarashi, J
Michel, T
机构
[1] Harvard Univ, Brigham & Womens Hosp, Div Cardiovasc, Sch Med, Boston, MA 02115 USA
[2] Vet Affairs Boston Healthcare Syst, W Roxbury, MA 02132 USA
关键词
D O I
10.1074/jbc.M003075200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plasmalemmal caveolae are membrane microdomains that are specifically enriched in sphingolipids and contain a wide array of signaling proteins, including the endothelial isoform of nitric-oxide synthase (eNOS). EDG-1 is a G protein-coupled receptor for sphingosine 1-phosphate (S1P) that is expressed in endothelial cells and has been implicated in diverse vascular signal transduction pathways. We analyzed the subcellular distribution of EDG-1 in COS-7 cells transiently transfected with cDNA constructs encoding epitope-tagged EDG-1. Subcellular fractionation of cell lysates resolved by ultracentrifugation in discontinuous sucrose gradients revealed that similar to 55% of the EDG-1 protein was recovered in fractions enriched in caveolin-1, a resident protein of caveolae, Co-immunoprecipitation experiments showed that EDG-1 could be specifically precipitated by antibodies directed against caveolin-1 and vice versa. The targeting of EDG-1 to caveolae-enriched fractions was markedly increased (from 51 +/- 11% to 93 +/- 14%) by treatment of transfected cells with S1P (5 mu M, 60 min). In co-transfection experiments expressing EDG-1 and eNOS cDNAs in COS-7 cells, we found that S1P treatment significantly and specifically increased nitric-oxide synthase activity, with an EC50 of 30 nM S1P. Overexpression of transfected caveolin-1 cDNA together with EDG-1 and eNOS markedly diminished S1P-mediated eNOS activation; caveolin overexpression also attenuated agonist-induced phosphorylation of EDG-1 receptor by >90%. These results suggest that the interaction of the EDG-1 receptor with caveolin may serve to inhibit signaling through the S1P pathway, even as the targeting of EDG-1 to caveolae facilitates the interactions of this receptor with ligands and effecters that are also targeted to caveolae. The agonist-modulated targeting of EDG-1 to caveolae and its dynamic inhibitory interactions with caveolin identify new points for regulation of sphingolipid-dependent signaling in the vascular wall.
引用
收藏
页码:32363 / 32370
页数:8
相关论文
共 44 条
[1]   Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid [J].
Bandoh, K ;
Aoki, J ;
Hosono, H ;
Kobayashi, S ;
Kobayashi, T ;
Murakami-Murofushi, K ;
Tsujimoto, M ;
Arai, H ;
Inoue, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (39) :27776-27785
[2]   Structure of detergent-resistant membrane domains: Does phase separation occur in biological membranes? [J].
Brown, DA ;
London, E .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1997, 240 (01) :1-7
[3]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[4]  
BUSCONI L, 1993, J BIOL CHEM, V268, P8410
[5]   Estrogen receptor α mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen [J].
Chen, Z ;
Yuhanna, IS ;
Galcheva-Gargova, Z ;
Karas, RH ;
Mendelsohn, RE ;
Shaul, PW .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (03) :401-406
[6]   Bradykinin sequesters B2 bradykinin receptors and the receptor-coupled G alpha subunits G alpha(q) and G alpha(i) in caveolae in DDT1 MF-2 smooth muscle cells [J].
deWeerd, WFC ;
LeebLundberg, LMF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (28) :17858-17866
[7]   The endothelial nitric-oxide synthase-caveolin regulatory cycle [J].
Feron, O ;
Saldana, F ;
Michel, JB ;
Michel, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (06) :3125-3128
[8]   Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes [J].
Feron, O ;
Smith, TW ;
Michel, T ;
Kelly, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (28) :17744-17748
[9]   Dynamic regulation of endothelial nitric oxide synthase: Complementary roles of dual acylation and caveolin interactions [J].
Feron, O ;
Michel, JB ;
Sase, K ;
Michel, T .
BIOCHEMISTRY, 1998, 37 (01) :193-200
[10]   Endothelial nitric oxide synthase targeting to caveolae - Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells [J].
Feron, O ;
Belhassen, L ;
Kobzik, L ;
Smith, TW ;
Kelly, RA ;
Michel, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (37) :22810-22814