Potential impact of iodine on tropospheric levels of ozone and other critical oxidants

被引:255
作者
Davis, D
Crawford, J
Liu, S
McKeen, S
Bandy, A
Thornton, D
Rowland, F
Blake, D
机构
[1] DREXEL UNIV, DEPT CHEM, PHILADELPHIA, PA 19104 USA
[2] UNIV CALIF IRVINE, DEPT CHEM, IRVINE, CA 92717 USA
[3] NOAA, AERON LAB, ENVIRONM RES LABS, BOULDER, CO 80303 USA
关键词
D O I
10.1029/95JD02727
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A new analysis of tropospheric iodine chemistry suggests that under certain conditions this chemistry could have a significant impact on the rate of destruction of tropospheric ozone. In addition, it suggests that modest shifts could result in the critical radical ratio HO2/OH. This analysis is based on the first ever observations of CH3I in the middle and upper free troposphere as recorded during the NASA Pacific Exploratory Mission in the western Pacific. Improved evaluations of several critical gas kinetic and photochemical rate coefficients have also been used. Three iodine source scenarios were explored in arriving at the above conclusions. These include: (1) the assumption that the release of CH3I from the marine environment was the only iodine source with boundary layer levels reflecting a low-productivity source region, (2) same as scenario 1 but with an additional marine iodine source in the form of higher molecular weight iodocarbons, and (3) source scenario 2 but with the release of all iodocarbons occurring in a region of high biological productivity, Based on one-dimensional model simulations, these three source scenarios resulted in estimated I-x (I-x =I + IO + HI + HOI + 2I(2)O(2) +INOx) yields for the upper troposphere of 0.5, 1.5, and 7 parts per trillion by volume (pptv), respectively. Of these, only at the 1.5 and 7 pptv level were meaningful enhancements in O-3 destruction estimated. Total column O-3 destruction for these cases averaged 6 and 30%, respectively. At present we believe the 1.5 pptv I-x source scenario to be more typical of the tropical marine environment; however, for specific regions of the Pacific (i.e., marine upwelling regions) and for specific seasons of the year, much higher levels might be experienced, Even so, significant uncertainties still remain in the proposed iodine chemistry. In particular, much uncertainty remains in the magnitude of the marine iodine source, In addition, several rate coefficients for gas phase processes need further investigating, as does the efficiency for removal of iodine due to aerosol scavenging processes.
引用
收藏
页码:2135 / 2147
页数:13
相关论文
共 55 条
[1]  
ANLAUF KG, 1994, J GEOPHYS RES, V99, P24345
[2]   EVALUATED KINETIC AND PHOTOCHEMICAL DATA FOR ATMOSPHERIC CHEMISTRY SUPPLEMENT-IV - IUPAC SUBCOMMITTEE ON GAS KINETIC DATA EVALUATION FOR ATMOSPHERIC CHEMISTRY [J].
ATKINSON, R ;
BAULCH, DL ;
COX, RA ;
HAMPSON, RF ;
KERR, JA ;
TROE, J .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1992, 21 (06) :1125-1568
[3]   OZONE DESTRUCTION AND PHOTOCHEMICAL-REACTIONS AT POLAR SUNRISE IN THE LOWER ARCTIC ATMOSPHERE [J].
BARRIE, LA ;
BOTTENHEIM, JW ;
SCHNELL, RC ;
CRUTZEN, PJ ;
RASMUSSEN, RA .
NATURE, 1988, 334 (6178) :138-141
[4]   Three-dimensional distribution of nonmenthane hydrocarbons and halocarbons over the northwestern Pacific during the 1991 Pacific Exploratory Mission (PEM-West A) [J].
Blake, DR ;
Chen, TY ;
Smith, TY ;
Wang, CJL ;
Wingenter, OW ;
Blake, NJ ;
Rowland, FS ;
Mayer, EW .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D1) :1763-1778
[5]   EFFECTS OF BIOMASS BURNING ON SUMMERTIME NONMETHANE HYDROCARBON CONCENTRATIONS IN THE CANADIAN WETLANDS [J].
BLAKE, DR ;
SMITH, TW ;
CHEN, TY ;
WHIPPLE, WJ ;
ROWLAND, FS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1994, 99 (D1) :1699-1719
[6]   DEPLETION OF LOWER TROPOSPHERIC OZONE DURING ARCTIC SPRING - THE POLAR SUNRISE EXPERIMENT 1988 [J].
BOTTENHEIM, JW ;
BARRIE, LA ;
ATLAS, E ;
HEIDT, LE ;
NIKI, H ;
RASMUSSEN, RA ;
SHEPSON, PB .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D11) :18555-18568
[7]   PHOTOCHEMICAL THEORY OF TROPOSPHERIC OZONE [J].
CHAMEIDES, W ;
WALKER, JCG .
JOURNAL OF GEOPHYSICAL RESEARCH, 1973, 78 (36) :8751-8760
[8]   IODINE - ITS POSSIBLE ROLE IN TROPOSPHERIC PHOTOCHEMISTRY [J].
CHAMEIDES, WL ;
DAVIS, DD .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1980, 85 (NC12) :7383-7398
[9]   ARE THERE INTERACTIONS OF IODINE AND SULFUR SPECIES IN MARINE AIR PHOTOCHEMISTRY [J].
CHATFIELD, RB ;
CRUTZEN, PJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D13) :22319-22341
[10]   Photostationary state analysis of the NO2-NO system based on airborne observations from the western and central North Pacific [J].
Crawford, J ;
Davis, D ;
Chen, G ;
Bradshaw, J ;
Sandholm, S ;
Gregory, G ;
Sachse, G ;
Anderson, B ;
Collins, J ;
Blake, D ;
Singh, H ;
Heikes, B ;
Talbot, R ;
Rodriguez, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D1) :2053-2072