Loading of the nonhomologous end joining factor, Ku, on protein-occluded DNA ends

被引:34
作者
Roberts, Steven A.
Ramsden, Dale A.
机构
[1] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
关键词
D O I
10.1074/jbc.M611125200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The nonhomologous end joining pathway for DNA double strand break repair requires Ku to bind DNA ends and subsequently recruit other nonhomologous end joining factors, including the DNA-dependent protein kinase catalytic subunit and the XRCC4-Ligase IV complex, to the break site. Ku loads at a break by threading the DNA ends through a circular channel in its structure. This binding mechanism explains both the high specificity of Ku for ends and its ability to translocate along DNA once loaded. However, DNA in cells is typically coated with other proteins ( e. g. histones), which might be expected to block the ability of Ku to load in this manner. Here we address how the nature of a protein obstruction dictates how Ku interacts with a DNA end. Ku is unable to access the ends within an important intermediate in V(D)J recombination ( a complex of RAG proteins bound to cleaved recombination targeting signals), but Ku readily displaces the linker histone, H1, from DNA. Ku also retains physiological affinity for nucleosome-associated ends. Loading onto nucleosome-associated ends still occurs by threading the end through its channel, but rather than displacing the nucleosome, Ku peels as much as 50 bp of DNA away from the histone octamer surface. We suggest a model where Ku utilizes an unusual characteristic of its three-dimensional structure to recognize certain protein-occluded ends without the extensive remodeling of chromatin structure required by other DNA repair pathways.
引用
收藏
页码:10605 / 10613
页数:9
相关论文
共 49 条
[1]   RAG1 and RAG2 form a stable postcleavage synaptic complex with DNA containing signal ends in V(D)J recombination [J].
Agrawal, A ;
Schatz, DG .
CELL, 1997, 89 (01) :43-53
[2]   Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Widom, J .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (04) :979-987
[3]   Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites [J].
Anderson, JD ;
Lowary, PT ;
Widom, J .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (04) :977-985
[4]  
BLIER PR, 1993, J BIOL CHEM, V268, P7594
[5]   Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase [J].
Chen, L ;
Trujillo, K ;
Sung, P ;
Tomkinson, AE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26196-26205
[6]  
CHRISTOPHER JA, 2004, SPOCK STRUCTURAL PRO
[7]   Developmental modulation of nonhomologous end joining in Caenorhabditis elegans [J].
Clejan, Iuval ;
Boerckel, Julie ;
Ahmed, Shawn .
GENETICS, 2006, 173 (03) :1301-1317
[8]   HELA NUCLEAR-PROTEIN RECOGNIZING DNA TERMINI AND TRANSLOCATING ON DNA FORMING A REGULAR DNA MULTIMERIC PROTEIN COMPLEX [J].
DEVRIES, E ;
VANDRIEL, W ;
BERGSMA, WG ;
ARNBERG, AC ;
VANDERVLIET, PC .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 208 (01) :65-78
[9]  
Dyer PN, 2004, METHOD ENZYMOL, V375, P23
[10]  
FALZON M, 1993, J BIOL CHEM, V268, P10546