Lateralization of ventral and dorsal auditory-language pathways in the human brain

被引:392
作者
Parker, GJM [1 ]
Luzzi, S
Alexander, DC
Wheeler-Kingshott, CAM
Clecarelli, O
Ralph, MAL
机构
[1] Univ Manchester, Dept Psychol, Manchester M13 9PT, Lancs, England
[2] Univ Ancona, Dept Neurosci, Ancona, Italy
[3] UCL, Dept Comp Sci, London, England
[4] UCL, Inst Neurol, NMR Res Unit, London, England
[5] UCL, Dept Rehabil Brain Injury & Headache, London, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
diffusion-weighted imaging; tractography; language; lateralization;
D O I
10.1016/j.neuroimage.2004.08.047
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent electrophysiological investigations of the auditory system in primates along with functional neuroimaging studies of auditory perception in humans have suggested there are two pathways arising from the primary auditory cortex. In the primate brain, a 'ventral' pathway is thought to project anteriorly from the primary auditory cortex to prefrontal areas along the superior temporal gyrus while a separate 'dorsal' route connects these areas posteriorly via the inferior parietal lobe. We use diffusion MRI tractography, a noninvasive technique based on diffusion-weighted MRI, to investigate the possibility of a similar pattern of connectivity in the human brain for the first time. The dorsal pathway from Wernicke's area to Broca's area is shown to include the arcuate fasciculus and connectivity to Brodmann area 40, lateral superior temporal gyrus (LSTG), and lateral middle temporal gyros. A ventral route between Wernicke's area and Broca's area is demonstrated that connects via the external capsule/uncinate fasciculus and the medial superior temporal gyrus. Ventral connections are also observed in the lateral superior and middle temporal gyri. The connections are stronger in the dominant hemisphere, in agreement with previous studies of functional lateralization of auditory-language processing. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:656 / 666
页数:11
相关论文
共 48 条
[1]   Analysis of partial volume effects in diffusion-tensor MRI [J].
Alexander, AL ;
Hasan, KM ;
Lazar, M ;
Tsuruda, JS ;
Parker, DL .
MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (05) :770-780
[2]   Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data [J].
Alexander, DC ;
Barker, GJ ;
Arridge, SR .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (02) :331-340
[3]  
Amunts K, 1999, J COMP NEUROL, V412, P319, DOI 10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO
[4]  
2-7
[5]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[6]   Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging [J].
Behrens, TEJ ;
Johansen-Berg, H ;
Woolrich, MW ;
Smith, SM ;
Wheeler-Kingshott, CAM ;
Boulby, PA ;
Barker, GJ ;
Sillery, EL ;
Sheehan, K ;
Ciccarelli, O ;
Thompson, AJ ;
Brady, JM ;
Matthews, PM .
NATURE NEUROSCIENCE, 2003, 6 (07) :750-757
[7]   'What', 'where' and 'how' in auditory cortex [J].
Belin, P ;
Zatorre, RJ .
NATURE NEUROSCIENCE, 2000, 3 (10) :965-966
[8]   Speech production after stroke: The role of the right pars opercularis [J].
Blank, SC ;
Bird, H ;
Turkheimer, F ;
Wise, RJS .
ANNALS OF NEUROLOGY, 2003, 54 (03) :310-320
[9]   Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain:: Position and spatial variability of the optic radiation [J].
Bürgel, U ;
Schormann, T ;
Schleicher, A ;
Zilles, K .
NEUROIMAGE, 1999, 10 (05) :489-499
[10]   Virtual in vivo interactive dissection of white matter fasciculi in the human brain [J].
Catani, M ;
Howard, RJ ;
Pajevic, S ;
Jones, DK .
NEUROIMAGE, 2002, 17 (01) :77-94