Inference in ensemble experiments

被引:38
作者
Rougier, Jonathan
Sexton, David M. H.
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Hadley Ctr, Meteorol Off, Exeter EX1 3PB, Devon, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2007年 / 365卷 / 1857期
基金
英国自然环境研究理事会;
关键词
Monte Carlo ensemble; designed ensemble; uncertainty; importance sampling; emulator; screening;
D O I
10.1098/rsta.2007.2071
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider inference based on ensembles of climate model evaluations, and contrast the Monte Carlo approach, in which the evaluations are selected at random from the model-input space, with a more overtly statistical approach using emulators and experimental design.
引用
收藏
页码:2133 / 2143
页数:11
相关论文
共 17 条
[1]  
[Anonymous], [No title captured]
[2]   Bayesian experimental design: A review [J].
Chaloner, K ;
Verdinelli, I .
STATISTICAL SCIENCE, 1995, 10 (03) :273-304
[3]  
DEGROOT MH, 2002, POBABILITY STAT
[4]   Probabilistic formulations for transferring inferences from mathematical models to physical systems [J].
Goldstein, M ;
Rougier, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02) :467-487
[5]  
GREGORY J, 1999, 7 MET OFF
[6]  
HARRELL FE, 1982, BIOMETRIKA, V69, P635
[7]  
Hollander M., 1999, Nonparametric Statistical Methods
[8]  
Liu J. S., 2001, Monte Carlo strategies in scientific computing
[9]   Quantification of modelling uncertainties in a large ensemble of climate change simulations [J].
Murphy, JM ;
Sexton, DMH ;
Barnett, DN ;
Jones, GS ;
Webb, MJ ;
Stainforth, DA .
NATURE, 2004, 430 (7001) :768-772
[10]   Bayesian analysis of computer code outputs: A tutorial [J].
O'Hagan, A. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2006, 91 (10-11) :1290-1300