Highly efficient deep-blue organic light-emitting diodes with doped transport layers

被引:79
作者
Gebeyehu, D
Walzer, K
He, G
Pfeiffer, M
Leo, K
Brandt, J
Gerhard, A
Stössel, P
Vestweber, H
机构
[1] Tech Univ Dresden, Inst Angew Photophys, D-01062 Dresden, Germany
[2] Novaled GmbH, D-01069 Dresden, Germany
[3] Cov Org Semicond GmbH, D-65926 Frankfurt, Germany
关键词
blue organic light-emitting diode; vacuum co-evaporation; doped transport layers; efficiency;
D O I
10.1016/j.synthmet.2004.09.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate highly efficient, vapor-deposited blue organic light-emitting diodes (OLEDs) operating at low voltage. For reaching deep-blue color, we used two new fluorophores, 9,10-bis(9,9'-spirobi[9H-fluorene]-2-yl)anthracene (Spiro-Anthracene) from Covion, and 4,4'-bis-(N,N-diphenylamino)-tetraphenyl (4P-TPD) from Syntec-Sensient, sandwiched in between p- and n-type doped wide band-gap transport layers and appropriate blocking layers. These p-i-n OLED devices show high luminance and efficiency at low operating voltages. Both dyes emit deep-blue light at color coordinates of x = 0.15 and y = 0.09 (4P-TPD) and x=0.15 and y=0.18 (Spiro-Anthracene). Optimized devices containing Spiro-Anthracene reach a luminance of 100 and 1000 cd/m(2) already at a voltage of 2.9 and 3.4 V, respectively. At the same time, a deep-blue color with CIE color coordinates of x = 0.14 and y = 0.14 as well as good current efficiencies (3.9 cd/A at 100 cd/m(2)) and quantum efficiencies (3.7% at 100 cd/m(2)) are reached, which shows that the concept of doped transport layers and appropriate fluorescent emitters can be applied successfully to the preparation of blue OLEDs. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 31 条
[1]   ORGANIC ELECTROLUMINESCENT DEVICE HAVING A HOLE CONDUCTOR AS AN EMITTING LAYER [J].
ADACHI, C ;
TSUTSUI, T ;
SAITO, S .
APPLIED PHYSICS LETTERS, 1989, 55 (15) :1489-1491
[2]   Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J].
Adachi, C ;
Kwong, RC ;
Djurovich, P ;
Adamovich, V ;
Baldo, MA ;
Thompson, ME ;
Forrest, SR .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :2082-2084
[3]   Blue-green organic light-emitting diodes based on fluorene-oxadiazole compounds [J].
Antoniadis, H ;
Inbasekaran, M ;
Woo, EP .
APPLIED PHYSICS LETTERS, 1998, 73 (21) :3055-3057
[4]   Highly efficient phosphorescent emission from organic electroluminescent devices [J].
Baldo, MA ;
O'Brien, DF ;
You, Y ;
Shoustikov, A ;
Sibley, S ;
Thompson, ME ;
Forrest, SR .
NATURE, 1998, 395 (6698) :151-154
[5]   Operating lifetime of phosphorescent organic light emitting devices [J].
Burrows, PE ;
Forrest, SR ;
Zhou, TX ;
Michalski, L .
APPLIED PHYSICS LETTERS, 2000, 76 (18) :2493-2495
[6]   Electroluminescence in conjugated polymers [J].
Friend, RH ;
Gymer, RW ;
Holmes, AB ;
Burroughes, JH ;
Marks, RN ;
Taliani, C ;
Bradley, DDC ;
Dos Santos, DA ;
Brédas, JL ;
Lögdlund, M ;
Salaneck, WR .
NATURE, 1999, 397 (6715) :121-128
[7]   Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction [J].
He, GF ;
Schneider, O ;
Qin, DS ;
Zhou, X ;
Pfeiffer, M ;
Leo, K .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5773-5777
[8]  
HE GS, IN PRESS APPL PHYS L
[9]   Blue organic electrophosphorescence using exothermic host-guest energy transfer [J].
Holmes, RJ ;
Forrest, SR ;
Tung, YJ ;
Kwong, RC ;
Brown, JJ ;
Garon, S ;
Thompson, ME .
APPLIED PHYSICS LETTERS, 2003, 82 (15) :2422-2424
[10]   Efficient, deep-blue organic electrophosphorescence by guest charge trapping [J].
Holmes, RJ ;
D'Andrade, BW ;
Forrest, SR ;
Ren, X ;
Li, J ;
Thompson, ME .
APPLIED PHYSICS LETTERS, 2003, 83 (18) :3818-3820