Estimation with maximum error requirements

被引:1
作者
Ben-Haim, Z [1 ]
Eldar, YC [1 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
来源
2004 23RD IEEE CONVENTION OF ELECTRICAL AND ELECTRONICS ENGINEERS IN ISRAEL, PROCEEDINGS | 2004年
关键词
D O I
10.1109/EEEI.2004.1361180
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of estimating a deterministic parameter vector x from observations y = Hx + w, where H is known and w is additive noise. We seek an estimator whose estimation error is within given limits, for as wide a range of conditions as possible. The error limit is a design choice, and is generally lower than the error provided by the well-known least-squares (LS) estimator. We develop estimators guaranteeing the required error for as large a parameter set as possible, and for as large a noise level as possible. We discuss methods for finding these estimators, and demonstrate that in many cases, the proposed estimators outperform the LS estimator.
引用
收藏
页码:416 / 419
页数:4
相关论文
共 13 条
[1]  
[Anonymous], 1977, SOLUTION ILL POSED P
[2]   Set-models of information-gap uncertainty: axioms and an inference scheme [J].
Ben-Haim, Y .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1999, 336 (07) :1093-1117
[3]  
Ben-Halm Y., 2001, SERIES DECISION RISK
[4]  
BENHAIM Z, 2004, UNPUB IEEE T SIG P
[5]  
BENHAIM Z, 2004, 1434 DEP EL ENG
[6]   LEAST SUM OF SQUARED ERRORS (LSSE) CHANNEL ESTIMATION [J].
CROZIER, SN ;
FALCONER, DD ;
MAHMOUD, SA .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1991, 138 (04) :371-378
[7]  
ELDAR YC, 2004, IN PRESS IEEE T SIG
[8]   ROBUST ESTIMATION OF LOCATION PARAMETER [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :73-&
[9]   ROBUST TECHNIQUES FOR SIGNAL-PROCESSING - A SURVEY [J].
KASSAM, SA ;
POOR, HV .
PROCEEDINGS OF THE IEEE, 1985, 73 (03) :433-481
[10]  
Kay SM, 1993, Fundamentals of Statistical Signal Processing