Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation

被引:494
作者
Bao, WZ [1 ]
Jaksch, D
Markowich, PA
机构
[1] Natl Univ Singapore, Dept Computat Sci, Singapore 117543, Singapore
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[3] Univ Vienna, Math Inst, A-1090 Vienna, Austria
关键词
Bose-Einstein condensation (BEC); Gross-Pitaevskii equation; time-splitting spectral method; approximate ground state solution; defocusing/focusing nonlinearity;
D O I
10.1016/S0021-9991(03)00102-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the numerical solution of the time-dependent Gross-Pitaevskii equation (GPE) describing a Bose-Einstein condensate (BEC) at zero or very low temperature. In preparation for the numerics we scale the 3d Gross-Pitaevskii equation and obtain a four-parameter model. Identifying 'extreme parameter regimes', the model is accessible to analytical perturbation theory, which justifies formal procedures well known in the physical literature: reduction to 2d and 1d GPEs, approximation of ground state solutions of the GPE and geometrical optics approximations. Then we use a time-splitting spectral method to discretize the time-dependent GPE. Again, perturbation theory is used to understand the discretization scheme and to choose the spatial/temporal grid in dependence of the perturbation parameter. Extensive numerical examples in 1d, 2d and 3d for weak/strong interactions, defocusing/focusing nonlinearity, and zero/ nonzero initial phase data are presented to demonstrate the power of the numerical method and to discuss the physics of Bose-Einstein condensation. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:318 / 342
页数:25
相关论文
共 61 条
[1]   Observation of vortex lattices in Bose-Einstein condensates [J].
Abo-Shaeer, JR ;
Raman, C ;
Vogels, JM ;
Ketterle, W .
SCIENCE, 2001, 292 (5516) :476-479
[2]   Numerical study of the spherically symmetric Gross-Pitaevskii equation in two space dimensions [J].
Adhikari, SK .
PHYSICAL REVIEW E, 2000, 62 (02) :2937-2944
[3]   Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms [J].
Adhikari, SK .
PHYSICS LETTERS A, 2000, 265 (1-2) :91-96
[4]   Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime [J].
Aftalion, A ;
Du, Q .
PHYSICAL REVIEW A, 2001, 64 (06) :1-11
[5]   NONLINEAR PULSE DISTORTION IN SINGLE-MODE OPTICAL FIBERS AT THE ZERO-DISPERSION WAVELENGTH [J].
AGRAWAL, GP ;
POTASEK, MJ .
PHYSICAL REVIEW A, 1986, 33 (03) :1765-1776
[6]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[7]  
BAO W, IN PRESS SIAM J NUME
[8]  
BAO W, IN PRESS J COMPUT PH
[9]   On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :487-524
[10]  
BAO WZ, IN PRESS SIAM J SCI