Light-regulated changes in abundance and polyribosome association of ferredoxin mRNA are dependent on photosynthesis

被引:76
作者
Petracek, ME [1 ]
Dickey, LF [1 ]
Huber, SC [1 ]
Thompson, WF [1 ]
机构
[1] N Carolina State Univ, Dept Bot, Raleigh, NC 27695 USA
关键词
D O I
10.1105/tpc.9.12.2291
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In transgenic tobacco plants containing a pea ferredoxin transcribed region (Fed-1) driven by the cauliflower mosaic virus 35S promoter (P-35S), light acts at a post-transcriptional level to control the abundance of Fed-1 mRNA in green leaves. To determine whether the light signal for this response involves photosynthesis, we treated transgenic seedlings with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosynthetic electron transport. DCMU prevented the normal light response by blocking reaccumulation of Fed-1 transcripts when dark-adapted green plants were returned to the light. In contrast, reaccumulation of light-harvesting complex B (Lhcb) transcripts was unaffected by DCMU treatment, Because Fed-1 light regulation requires translation, we also examined polyribosome profiles. We found that Fed-1 transcripts accumulated on polyribosomes in the light but were found primarily in non-polyribosomal fractions in dark-adapted plants or in illuminated plants exposed to lower than normal light intensity or treated with DCMU. Surprisingly, although Lhcb mRNA abundance was not affected by DCMU, its polyribosomal loading pattern was altered in much the same way as was that of Fed-1 mRNA. In contrast, DCMU had no effect on either the abundance or the polyribosome profiles of endogenous histone H1 or transgenic P-35S::CAT transcripts. Thus, our results are consistent with the hypothesis that a process coupled to photosynthesis affects the polyribosome loading of a subset of cytoplasmic mRNAs.
引用
收藏
页码:2291 / 2300
页数:10
相关论文
共 43 条
[1]   REDOX CONDITIONS SPECIFY THE PROTEINS SYNTHESIZED BY ISOLATED-CHLOROPLASTS AND MITOCHONDRIA [J].
ALLEN, CA ;
HAKANSSON, G ;
ALLEN, JF .
REDOX REPORT, 1995, 1 (02) :119-123
[2]   PHOTOSYNTHESIS - REGULATION BY REDOX SIGNALING [J].
ALLEN, JF ;
ALEXCIEV, K ;
HAKANSSON, G .
CURRENT BIOLOGY, 1995, 5 (08) :869-872
[3]   PROTEIN-PHOSPHORYLATION IN REGULATION OF PHOTOSYNTHESIS [J].
ALLEN, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1098 (03) :275-335
[4]   MESSENGER-RNAS ENCODING RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE REMAIN BOUND TO POLYSOMES BUT ARE NOT TRANSLATED IN AMARANTH SEEDLINGS TRANSFERRED TO DARKNESS [J].
BERRY, JO ;
CARR, JP ;
KLESSIG, DF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (12) :4190-4194
[5]   TRANSLATIONAL REGULATION OF LIGHT-INDUCED RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE GENE-EXPRESSION IN AMARANTH [J].
BERRY, JO ;
NIKOLAU, BJ ;
CARR, JP ;
KLESSIG, DF .
MOLECULAR AND CELLULAR BIOLOGY, 1986, 6 (07) :2347-2353
[6]   LIGHT-MEDIATED CONTROL OF TRANSLATIONAL INITIATION OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE IN AMARANTH COTYLEDONS [J].
BERRY, JO ;
BREIDING, DE ;
KLESSIG, DF .
PLANT CELL, 1990, 2 (08) :795-803
[7]   FUNCTION OF THE P86 SUBUNIT OF EUKARYOTIC INITIATION-FACTOR (ISO)4F AS A MICROTUBULE-ASSOCIATED PROTEIN IN PLANT-CELLS [J].
BOKROS, CL ;
HUGDAHL, JD ;
KIM, HH ;
HANESWORTH, VR ;
VANHEERDEN, A ;
BROWNING, KS ;
MOREJOHN, LC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (15) :7120-7124
[8]   LIGHT REGULATED TRANSLATIONAL ACTIVATORS - IDENTIFICATION OF CHLOROPLAST GENE SPECIFIC MESSENGER-RNA BINDING-PROTEINS [J].
DANON, A ;
MAYFIELD, SPY .
EMBO JOURNAL, 1991, 10 (13) :3993-4001
[9]   LIGHT-REGULATED TRANSLATION OF CHLOROPLAST MESSENGER-RNAS THROUGH REDOX POTENTIAL [J].
DANON, A ;
MAYFIELD, SP .
SCIENCE, 1994, 266 (5191) :1717-1719
[10]   Methods for isolation and analysis of polyribosomes [J].
Davies, E ;
Abe, S .
METHODS IN CELL BIOLOGY, VOL 50: METHODS IN PLANT CELL BIOLOGY, PT B, 1995, 50 :209-222