Epidemic phase and the site percolation with distant-neighbor interactions

被引:4
作者
dos Santos, CB [1 ]
Barbin, D
Caliri, A
机构
[1] Univ Sao Paulo, Dept Math & Phys, FFCLRP, BR-14040901 Ribeirao Preto, Brazil
[2] Univ Sao Paulo, Dept Math & Stat, ESALQ, BR-13418900 Piracicaba, SP, Brazil
[3] Univ Sao Paulo, Dept Chem & Phys, FCFRP, BR-14040903 Ribeirao Preto, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/S0375-9601(97)00889-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalized site percolation model is used to construct an analogy with the epidemic problem, involving spatial coordinates. Epidemic phase and concepts like herd immunity are analyzed in terms nf connectivity in a 2D square lattice. The epidemic model used in this work considers a specific interaction topology that includes up to the fifth-nearest neighbors, The results, obtained by Monte Carlo simulation, emphasize the meaning of the spatial coordinates and are illustrated by an epidemic/non-epidemic phase diagram. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:54 / 58
页数:5
相关论文
共 15 条
[1]   CRITICAL AND HISTORICAL APPROACH TO THEOPHILUS DE URINIS - URINE AS BLOODS PERCOLATION MADE BY THE KIDNEY AND UROSCOPY IN THE MIDDLE-AGES [J].
ANGELETTI, LR ;
CAVARRA, B .
AMERICAN JOURNAL OF NEPHROLOGY, 1994, 14 (4-6) :282-289
[2]  
[Anonymous], 2018, INTRO PERCOLATION TH
[3]  
Binder K, 1992, MONTE CARLO METHOD C
[4]  
Binder K., 1988, MONTE CARLO SIMULATI
[5]   EPIDEMIC MODELS AND PERCOLATION [J].
CARDY, JL ;
GRASSBERGER, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (06) :L267-L271
[6]  
DASGUPTA C, 1976, PHYS REV B, V14, P1248
[7]  
Deutscher G., 1983, ANN ISRAEL PHYS SOC, V5
[8]   CRYSTAL STATISTICS WITH LONG-RANGE FORCES .I. EQUIVALENT NEIGHBOUR MODEL [J].
DOMB, C ;
DALTON, NW .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1966, 89 (566P) :859-&
[9]  
GEVRILETS S, 1997, J THEOR BIOL, V184, P51
[10]   REGGEON FIELD-THEORY (SCHLOGL 1ST MODEL) ON A LATTICE - MONTE-CARLO CALCULATIONS OF CRITICAL BEHAVIOR [J].
GRASSBERGER, P ;
DELATORRE, A .
ANNALS OF PHYSICS, 1979, 122 (02) :373-396