Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates

被引:221
作者
Sander, MS [1 ]
Tan, LS [1 ]
机构
[1] Inst Mat Res & Engn, Singapore 117602, Singapore
关键词
D O I
10.1002/adfm.200304290
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High density nanoparticle arrays on surfaces have been created using a template-assisted approach. Templates were produced by evaporating aluminum onto substrates and subsequently anodizing the aluminum to produce nanoporous alumina films. The resulting templates have a narrow distribution of pore sizes tunable from similar to25 to similar to70 nm. To demonstrate the flexibility of this approach for producing nanoparticle arrays on various substrates, templates have been fabricated on silicon oxide, silicon, and gold surfaces. In all cases, a final chemical etching step yielded pores that extended completely through the template to the underlying substrate. Because the templates remain in intimate contact with the substrate throughout processing, they may be used with either vacuum-based or wet chemical deposition methods to direct the deposition of nanoparticles onto the underlying substrates. Here we have produced gold nanodot arrays using evaporation and gold nanorod arrays by electrodeposition. In each case, the diameter and height of the nanoparticles can be controlled using the confining dimensions of the templates, resulting in high density (similar to10(10)cm(-2)) arrays of nanoparticles over large areas (> 1 cm(2)).
引用
收藏
页码:393 / 397
页数:5
相关论文
共 31 条
[1]   Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid [J].
Asoh, H ;
Nishio, K ;
Nakao, M ;
Yokoo, A ;
Tamamura, T ;
Masuda, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (02) :569-572
[2]   Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate [J].
Chu, SZ ;
Wada, K ;
Inoue, S ;
Todoroki, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (07) :B321-B327
[3]   Self-ordered pore structure of anodized aluminum on silicon and pattern transfer [J].
Crouse, D ;
Lo, YH ;
Miller, AE ;
Crouse, M .
APPLIED PHYSICS LETTERS, 2000, 76 (01) :49-51
[4]   SELF-ASSEMBLED METAL COLLOID MONOLAYERS - AN APPROACH TO SERS SUBSTRATES [J].
FREEMAN, RG ;
GRABAR, KC ;
ALLISON, KJ ;
BRIGHT, RM ;
DAVIS, JA ;
GUTHRIE, AP ;
HOMMER, MB ;
JACKSON, MA ;
SMITH, PC ;
WALTER, DG ;
NATAN, MJ .
SCIENCE, 1995, 267 (5204) :1629-1632
[5]   Template-based synthesis of nanomaterials [J].
Huczko, A .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2000, 70 (04) :365-376
[6]   Self-organized formation of hexagonal pore arrays in anodic alumina [J].
Jessensky, O ;
Muller, F ;
Gosele, U .
APPLIED PHYSICS LETTERS, 1998, 72 (10) :1173-1175
[7]  
JIANG JY, 2002, J APPL PHYS, V91, P2544
[8]   Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina [J].
Li, AP ;
Muller, F ;
Birner, A ;
Nielsch, K ;
Gosele, U .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (11) :6023-6026
[9]   On the growth of highly ordered pores in anodized aluminum oxide [J].
Li, FY ;
Zhang, L ;
Metzger, RM .
CHEMISTRY OF MATERIALS, 1998, 10 (09) :2470-2480
[10]   NANOMATERIALS - A MEMBRANE-BASED SYNTHETIC APPROACH [J].
MARTIN, CR .
SCIENCE, 1994, 266 (5193) :1961-1966