Spectral approximation by the polar transformation

被引:3
作者
Hall, RL [1 ]
Zhou, WH [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
关键词
D O I
10.1139/cjp-76-1-31
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Central potentials V(r) are considered that admit the polar representation V(r) = g(h(r)), where h(r) = sgn(q)r(q), q is fixed, and g is the polar transformation function. This representation allows the Schrodinger eigenvalues generated by V to be approximated in terms of those generated by the pure polar potential h(r). In many cases a pair of powers (q(1), q(2)) can be chosen so that the corresponding polar functions (g(1), g(2)) have definite and opposite convexity. For such cases, the spectral approximations provide both upper and lower bounds for the entire discrete spectrum. The example V(r) = ar(2) + br(2)/(1 + cr(2)) is considered in detail.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 31 条
[1]   REMARKS ON TURSCHNER EIGENVALUE FORMULA [J].
ASHBAUGH, MS ;
MORGAN, JD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (04) :809-819
[2]   A NOTE ON THE SCHRODINGER-EQUATION FOR THE X2 + LAMBDA-X2/(1 + GX2) POTENTIAL [J].
BESSIS, N ;
BESSIS, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (12) :2780-2785
[3]   A HARMONIC-OSCILLATOR PERTURBED BY THE POTENTIAL LAMBDA-CHI-2-(1+G-CHI-2) [J].
BHAGWAT, KV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (02) :377-378
[4]   EIGENVALUES OF LAMBDA X2M ANHARMONIC OSCILLATORS [J].
BISWAS, SN ;
DATTA, K ;
SAXENA, RP ;
SRIVASTAVA, PK ;
VARMA, VS .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1190-1195
[5]   THE SCHRODINGER-EQUATION FOR THE CHI-2+LAMBDA-CHI-2/(1+G-CHI-2) INTERACTION [J].
BLECHER, MH ;
LEACH, PGL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (17) :5923-5927
[6]  
Brascamp, 1976, STUDIES MATH PHYSICS, P83
[7]   GROUND-STATE ENERGY BOUNDS FOR POTENTIALS [X]-NU [J].
CRANDALL, RE ;
RENO, MH .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (01) :64-70
[8]   APPROXIMATIONS TO THE EIGENVALUES OF THE HAMILTONIAN P2 + A PARALLEL TO XV IN THE WEYL CORRESPONDENCE LIMIT - CRITICAL-APPRAISAL OF TURSCHNERS FORMULA [J].
CROWLEY, BJB ;
HILL, TF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (09) :L223-L228
[9]   A FINITE-DIFFERENCE APPROACH FOR THE CALCULATION OF PERTURBED OSCILLATOR ENERGIES [J].
FACK, V ;
VANDENBERGHE, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (17) :3355-3363
[10]  
FERNANDES RM, 1982, AM J PHYS, V50, P92