Consistent deformations of dual formulations of linearized gravity: A no-go result

被引:95
作者
Bekaert, X [1 ]
Boulanger, N
Henneaux, M
机构
[1] Univ Padua, Dipartimento Fis, Via F Marzolo 8, I-35131 Padua, Italy
[2] Free Univ Brussels, B-1050 Brussels, Belgium
[3] Ctr Estudios Cient, Valdivia, Chile
关键词
D O I
10.1103/PhysRevD.67.044010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The consistent, local, smooth deformations of the dual formulation of linearized gravity involving a tensor field in the exotic representation of the Lorentz group with Young symmetry type (D-3,1) (one column of length D-3 and one column of length 1) are systematically investigated. The rigidity of the Abelian gauge algebra is first established. We next prove a no-go theorem for interactions involving at most two derivatives of the fields.
引用
收藏
页数:8
相关论文
共 62 条
[1]  
ANCO SC, MATHPH0209052
[2]  
ANCO SC, MATHPH0209051
[3]  
[Anonymous], HEPTH9910096
[4]   HIGHER SPIN FIELDS WITH MIXED SYMMETRY [J].
AULAKH, CS ;
KOH, IG ;
OUVRY, S .
PHYSICS LETTERS B, 1986, 173 (03) :284-288
[5]   Higher dimensional Chern-Simons supergravity [J].
Banados, M ;
Troncoso, R ;
Zanelli, J .
PHYSICAL REVIEW D, 1996, 54 (04) :2605-2611
[6]   CONSISTENT COUPLINGS BETWEEN FIELDS WITH A GAUGE FREEDOM AND DEFORMATIONS OF THE MASTER EQUATION [J].
BARNICH, G ;
HENNEAUX, M .
PHYSICS LETTERS B, 1993, 311 (1-4) :123-129
[7]   LOCAL BRST COHOMOLOGY IN THE ANTIFIELD FORMALISM .2. APPLICATION TO YANG-MILLS THEORY [J].
BARNICH, G ;
BRANDT, F ;
HENNEAUX, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (01) :93-116
[8]   LOCAL BRST COHOMOLOGY IN THE ANTIFIELD FORMALISM .1. GENERAL THEOREMS [J].
BARNICH, G ;
BRANDT, F ;
HENNEAUX, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (01) :57-91
[9]   Local BRST cohomology in gauge theories [J].
Barnich, G ;
Brandt, F ;
Henneaux, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 338 (05) :439-569
[10]   QUANTIZATION OF GAUGE-THEORIES WITH LINEARLY DEPENDENT GENERATORS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICAL REVIEW D, 1983, 28 (10) :2567-2582