Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle

被引:695
作者
Schiffelers, RM
Ansari, A
Xu, J
Zhou, Q
Tang, QQ
Storm, G
Molema, G
Lu, PY
Scaria, PV
Woodle, MC
机构
[1] Intradigm Corp, Rockville, MD 20852 USA
[2] Univ Utrecht, Utrecht Inst Pharmaceut Sci, NL-3508 TB Utrecht, Netherlands
[3] Univ Groningen, Dept Pathol & Lab Med, Med Biol Sect, Inst Drug Explorat, NL-9713 GZ Groningen, Netherlands
关键词
D O I
10.1093/nar/gnh140
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Potent sequence selective gene inhibition by siRNA 'targeted' therapeutics promises the ultimate level of specificity, but siRNA therapeutics is hindered by poor intracellular uptake, limited blood stability and non-specific immune stimulation. To address these problems, ligand-targeted, sterically stabilized nanoparticles have been adapted for siRNA. Self-assembling nanoparticles with siRNA were constructed with polyethyleneimine (PEI) that is PEGylated with an Arg-Gly-Asp (RGD) peptide ligand attached at the distal end of the polyethylene glycol (PEG), as a means to target tumor neovasculature expressing integrins and used to deliver siRNA inhibiting vascular endothelial growth factor receptor-2 (VEGF R2) expression and thereby tumor angiogenesis. Cell delivery and activity of PEGylated PEI was found to be siRNA sequence specific and depend on the presence of peptide ligand and could be competed by free peptide. Intravenous administration into tumor-bearing mice gave selective tumor uptake, siRNA sequence-specific inhibition of protein expression within the tumor and inhibition of both tumor angiogenesis and growth rate. The results suggest achievement of two levels of targeting: tumor tissue selective delivery via the nanoparticle ligand and gene pathway selectivity via the siRNA oligonucleotide. This opens the door for better targeted therapeutics with both tissue and gene selectivity, also to improve targeted therapies with less than ideal therapeutic targets.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model [J].
Arap, W ;
Pasqualini, R ;
Ruoslahti, E .
SCIENCE, 1998, 279 (5349) :377-380
[2]  
Brekken RA, 2000, CANCER RES, V60, P5117
[3]   Systematic genome-wide screens of gene function [J].
Carpenter, AE ;
Sabatini, DM .
NATURE REVIEWS GENETICS, 2004, 5 (01) :11-22
[4]   Molecular medicine for the brain: silencing of disease genes with RNA interference [J].
Davidson, BL ;
Paulson, HL .
LANCET NEUROLOGY, 2004, 3 (03) :145-149
[5]   Analysis of gene function in somatic mammalian cells using small interfering RNAs [J].
Elbashir, SM ;
Harborth, J ;
Weber, K ;
Tuschl, T .
METHODS, 2002, 26 (02) :199-213
[6]  
Erbacher P, 1999, J GENE MED, V1, P210
[7]   Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer [J].
Ferrara, N ;
Hillan, KJ ;
Gerber, HP ;
Novotny, W .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (05) :391-400
[8]  
Filleur S, 2003, CANCER RES, V63, P3919
[9]  
Ganju P, 2004, EXPERT OPIN BIOL TH, V4, P531
[10]   Macromolecular therapeutics - Advantages and prospects with special emphasis on solid tumour targeting [J].
Greish, K ;
Fang, J ;
Inutsuka, T ;
Nagamitsu, A ;
Maeda, H .
CLINICAL PHARMACOKINETICS, 2003, 42 (13) :1089-1105